Advertisements
Advertisements
Question
In Fig. there are shown sectors of two concentric circles of radii 7 cm and 3.5 cm. Find the area of the shaded region. Use π = `(\frac { 22 }{ 7 }).`
Sum
Solution
Let A1 and A2 be the areas of sectors OAB and OCD respectively. Then, A1 = Area of a sector of angle 30º in a circle of radius 7 cm
`A_{1}={ \frac{30}{360}\times \frac{22}7\times 7^{2}}`
`⇒ A_1 = \frac { 77 }{ 6 } cm^2`
A2 = Area of a sector of angle 30º in a circle of radius 3.5 cm.
∴ Area of the shaded region
`A_{2}={ \frac{30}{360}\times \frac{22}{7}\times (3.5)^{2}}`
`A_{2}={ \frac{1}{12}\times \frac{22}{7}\times\frac{7}{2}\times \frac{7}{2}}`
`=A_{1}-A_{2}=( \frac{77}{6}-\frac{77}{24})`
`= \frac { 77 }{ 24 } × (4 – 1) cm^2 = \frac { 77 }{ 8 } cm^2 = 9.625 cm^2`
shaalaa.com
Is there an error in this question or solution?