Advertisements
Advertisements
Question
In the given figure, PQ is a chord of length 8cm of a circle of radius 5cm. The tangents at P and Q intersect at a point T. Find the length TP
Solution
Join OP and OT Let OT intersect PQ at a point R.
Then, TP = TQ and ∠PTR = ∠QTR.
∴ TR ⊥ PQ and TR bisects PQ.
∴ PR = RQ = 4 cm.
`\text{Also, OR}=\sqrt{OP^{2}-PR^{2}}=\sqrt{5^{2}-4^{2})\text{ cm}`
`=\sqrt{25-16}=\sqrt{9}=3\text{ cm}`
Let TP = x cm and TR = y cm.
From right ∆TRP, we get
`TP^2 = TR^2 + PR^2`
`⇒ x^2 = y^2 + 16 ⇒ x^2 – y^2 = 16 …. (i)`
From right ∆OPT, we get
`TP^2 + OP^2 = OT^2`
`⇒ x^2 + 52 = (y + 3)^2 [∵ OT^2 = (OR + RT)^2 ]`
`⇒ x^2 – y^2 = 6y – 16 ….(ii)`
From (i) and (ii), we get
6y – 16 = 16 ⇒ 6y = 32 ⇒ y = 16/3.
Putting y = 16/3 in (i), we get
`\x^{2}=16+( \frac{16}{3})^{2}=(\frac{256}{9}+16)=\frac{400}{9}`
`\Rightarrow x=\sqrt{\frac{400}{9}}=\frac{20}{3} `
Hence, length TP = x cm = 20/3 cm
= 6.67 cm.