Advertisements
Advertisements
Question
In the following figure, AB = AC; BC = CD and DE are parallel to BC.
Calculate:
- ∠CDE
- ∠DCE
Solution
∠FAB = 128° ...[Given]
∠BAC + ∠FAB = 180° ...[FAC is a st. line]
⇒ ∠BAC = 180° − 128°
⇒ ∠BAC = 52°
In ΔABC,
∠A = 52°
∠B = ∠C ...[Given AB = AC and angels opposite to equal sides are equal]
∠A + ∠B + ∠C = 180°
⇒ ∠A + ∠B + ∠B = 180°
⇒ 52° + 2∠B = 180°
⇒ 2∠B = 128°
⇒ ∠B = 64° = ∠C ...(i)
⇒ ∠B = ∠ADE ...[Given DE || BC]
(i)
Now,
∠ADE + ∠CDE + ∠B = 180° ....[ADB is a st. line]
⇒ 64° + ∠CDE + 64° = 180°
⇒ ∠CDE = 180° − 128°
⇒ ∠CDE = 52°
(ii)
Given DE || BC and DC is the transversal.
⇒ ∠CDE = ∠DCB = 52° ...(ii)
Also, ∠ECB = 64° ...[From (i)]
But,
∠ECB = ∠DCE + ∠DCB
⇒ 64° = ∠DCE + 52°
⇒ ∠DCE = 64° − 52°
⇒ ∠DCE = 12°