Advertisements
Advertisements
Question
In the following table, Laspeyre's and Paasche's Price Index Numbers are equal. Complete the following activity to find x :
Commodity | Base Year | Current year | ||
Price | Quantity | Price | Quantity | |
A | 2 | 10 | 2 | 5 |
B | 2 | 5 | x | 2 |
Solution: P01(L) = P01(P)
`(sum "p"_1"q"_0)/(sum "p"_0"q"_0) xx 100 = square/(sum "p"_0"q"_1) xx 100`
`(20 + 5x)/square xx 100 = square/14 xx 100`
∴ x = `square`
Fill in the Blanks
Sum
Solution
Commodity | Base Year | Current year | p0q0 | p1q0 | p0q1 | p1q1 | ||
p0 | q0 | p1 | q1 | |||||
A | 2 | 10 | 2 | 5 | 20 | 20 | 10 | 10 |
B | 2 | 5 | x | 2 | 10 | 5x | 4 | 2x |
Total | - | - | - | - | 30 | 20+5x | 14 | 10+2x |
P01(L) = P01(P)
`(sum "p"_1"q"_0)/(sum "p"_0"q"_0) xx 100 = bb(sum "p"_1"q"_1)/(sum "p"_0"q"_1) xx 100`
`(20 + 5x)/bb30 xx 100 = bb(10 + 2x)/14 xx 100`
∴ `280 + 70x = 300 + 60x`
∴ `10x = 20`
∴ x = 2
shaalaa.com
Construction of Index Numbers - Weighted Aggregate Method
Is there an error in this question or solution?