English

In the given figure, points G, D, E, and F are concyclic points of a circle with centre C. ∠ECF = 70°, m(arc DGF) = 200°. Find m(arc DE) and m(arc DEF). - Geometry Mathematics 2

Advertisements
Advertisements

Question

In the given figure, points G, D, E, and F are concyclic points of a circle with centre C. ∠ECF = 70°, m(arc DGF) = 200°. Find m(arc DE) and m(arc DEF).

Sum

Solution

m(arc EF) = m∠ECF ...(Definition of measure of minor arc)

∴ m(arc EF) = 70º

(i) m(arc DE) + m(arc DGF) + m(arc EF) = 360º ...(Measure of a circle is 360º)

∴ m(arc DE) + 200° + 70º = 360º 

∴ m(arc DE) = 360º − 200° − 70º

∴ m(arc DE) = 90º

(ii) m(arc DEF) = m(arc DE) + m(arc EF) ...(Arc addition property)

∴ m(arc DEF) = 90º + 70º

∴ m(arc DEF) = 160º

Thus, m(arc DE) = 90º and m(arc DEF) = 160º.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Circle - Practice Set 3.3 [Page 63]

Video TutorialsVIEW ALL [2]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×