Advertisements
Advertisements
Question
In `triangle ABC` prove that `tan((C-A)/2) = ((c-a)/(c+a))cot B/2`
Solution
In `triangle ABC`, by sine Rule
`a/(sin A) = b/(sin B) = c/(sin C) = K`
∴ a = k sinA, b = k sinB, c = k sinC
Consider,
`(c-a)/(c+a) = (ksinC - ksinA)/(ksinC + ksin A)`
`= (sinC - sin A)/(sin C + sin A)`
`= (2cos((C+A)/2) sin((C-A)/2))/(2sin((C+A)/2)cos ((C-A)/2))`
`= cot((C+A)/2)tan((C-A)/2)`
`= tan B/2 tan((C-A)/2)`
`:. tan((C-A)/2) = ((C-a)/(C+a)) cot B/2`
Hence proved
APPEARS IN
RELATED QUESTIONS
In Δ ABC, prove that, a (b cos C - c cos B) = b2 - c2.
If from a point Q (a, b, c) perpendiculars QA and QB are drawn to the YZ and ZX planes respectively, then find the vector equation of the plane QAB.
If a line makes angles α, β, γ with co-ordinate axes, prove that cos 2α + cos2β + cos2γ+ 1 = 0.
Prove that `sin^(−1) (-1/2) + cos^(-1) (-sqrt3/2) = cos^(-1) (-1/2)`