English

In the Triangle Abc with Vertices a (2, 3), B (4, −1) and C (1, 2), Find the Equation and the Length of the Altitude from the Vertex A. - Mathematics

Advertisements
Advertisements

Question

In the triangle ABC with vertices A (2, 3), B (4, −1) and C (1, 2), find the equation and the length of the altitude from the vertex A.

Short Note

Solution

Equation of side BC:

\[y + 1 = \frac{2 + 1}{1 - 4}\left( x - 4 \right)\]
\[ \Rightarrow x + y - 3 = 0\]

The equation of the altitude that is perpendicular to 

\[x + y - 3 = 0\]  is \[x - y + \lambda = 0\] . 
Line \[x - y + \lambda = 0\]   passes through (2, 3).
\[\therefore 2 - 3 + \lambda = 0 \Rightarrow \lambda = 1\]
Thus, the equation of the altitude from the vertex (2, 3) is \[x - y + 1 = 0\] . Let d be the length of the altitude from (2, 3). \[d = \left| \frac{2 + 3 - 3}{\sqrt{1^2 + 1^2}} \right|\]
\[ \Rightarrow d = \sqrt{2}\] Hence, the required distance is \[\sqrt{2}\] .
 

 
 
 
shaalaa.com
Straight Lines - Brief Recall of Two Dimensional Geometry from Earlier Classes
  Is there an error in this question or solution?
Chapter 23: The straight lines - Exercise 23.15 [Page 108]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 23 The straight lines
Exercise 23.15 | Q 12 | Page 108
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×