Advertisements
Advertisements
Question
`int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = ______.
Options
`pi/8`
`pi/2`
`pi/4`
0
MCQ
Solution
`int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = 0.
Explanation:
Let f(x) = `log ((2 - sin x)/(2 + sin x))`
∴ f(- x) = log `((2 - sin(- x))/(2 + sin(- x)))`
`= - log ((2 - sin x)/(2 + sin x))`
= - f(x)
∴ f(x) is an odd function.
∴ `int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = 0
shaalaa.com
Fundamental Theorem of Integral Calculus
Is there an error in this question or solution?