English

int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x)) dx = ____ -

Advertisements
Advertisements

Question

`int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = ______.

Options

  • `pi/8`

  • `pi/2`

  • `pi/4`

  • 0

MCQ

Solution

`int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = 0.

Explanation:

Let f(x) = `log ((2 - sin x)/(2 + sin x))`

∴ f(- x) = log `((2 - sin(- x))/(2 + sin(- x)))`

`= - log ((2 - sin x)/(2 + sin x))`

= - f(x)

∴ f(x) is an odd function.

∴ `int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = 0

shaalaa.com
Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×