Advertisements
Advertisements
Question
`int_0^(pi/2) root(7)(sin x)/(root(7)(sin x) + root(7)(cos x))`dx = ?
Options
`pi/8`
`pi/3`
`pi/4`
`pi/2`
MCQ
Solution
`pi/4`
Explanation:
We have,
I = `int_0^(pi/2) root(7)(sin x)/(root(7)(sin x) + root(7)(cos x))`dx
I = `int_0^(pi/2) root(7)(sin (pi/2 - x))/(root(7)(sin (pi/2 - x)) + root(7)(cos (pi/2 - x)))`dx
I = `int_0^(pi/2) (root(7)(cos x))/(root(7)(cos x) + root(7)(sin x))`dx
2I = `int_0^(pi/2) (root(7)(sin x) + root(7)(cos x))/(root(7)(sin x) + root(7)(cos x))` dx
2I = `int_0^(pi/2)` dx
2I = `[x]_0^(pi/2) = pi/2`
I = `pi/4`
shaalaa.com
Fundamental Theorem of Integral Calculus
Is there an error in this question or solution?