Advertisements
Advertisements
Question
Integrate the following with respect to x:
x sec x tan x
Solution
`int x sec x tan x "d"x`
u = x
u’ = 1
u” = 0
dv = sec x tan x dx
v = `int sec x tan x "d"x` = sec x
v1 = `int "v" "d"x`
= `int sec x "d"x`
= `log |sec x + tan x|`
v2 = `int "v"_1 "d"x`
= `int log |sec x + tan x| "d"x`
`int "u" "dv"` = uv – u’v1 + u”v2 – u”’v3 + ………….
`int x sec x tan x "d"x = x sec x – 1 × log |sec x + tan x| + 0 xx int log |x sec x tan x| + "c"`
`int x sec x tan x "d"x = x sec x – log |sec x + tan x| + "c"`
APPEARS IN
RELATED QUESTIONS
Integrate the following functions with respect to x :
`[sqrt(x) + 1/sqrt(x)]^2`
Integrate the following functions with respect to x :
`(cos 2x)/(sin^2x cos^2x)`
Integrate the following functions with respect to x :
`(3 + 4cosx)/(sin^2x)`
Integrate the following functions with respect to x :
`(sin4x)/sinx`
Integrate the following functions with respect to x :
`(3x + 4) sqrt(3x + 7)`
Integrate the following functions with respect to x :
`(8^(1 + x) + 4^(1 - x))/2^x`
Integrate the following with respect to x :
sin5x cos3x
Integrate the following with respect to x :
`cosx/(cos(x - "a"))`
Integrate the following with respect to x:
25xe–5x
Integrate the following with respect to x:
`sin^-1 ((2x)/(1 + x^2))`
Integrate the following with respect to x:\
`logx/(1 + log)^2`
Find the integrals of the following:
`1/sqrt(x^2 - 4x + 5)`
Integrate the following with respect to x:
`(5x - 2)/(2 + 2x + x^2)`
Integrate the following with respect to x:
`(3x + 1)/(2x^2 - 2x + 3)`
Integrate the following functions with respect to x:
`sqrt(81 + (2x + 1)^2`
Choose the correct alternative:
`int secx/sqrt(cos2x) "d"x` is
Choose the correct alternative:
`int (x^2 + cos^2x)/(x^2 + 1) "cosec"^2 x/("d"x)` is
Choose the correct alternative:
`int "e"^(- 4x) cos "d"x` is
Choose the correct alternative:
`int (x + 2)/sqrt(x^2 - 1) "d"x` is
Choose the correct alternative:
`int "e"^(sqrt(x)) "d"x` is