Advertisements
Advertisements
Question
Let `θ∈(0, π/2)`. If the system of linear equations,
(1 + cos2θ)x + sin2θy + 4sin3θz = 0
cos2θx + (1 + sin2θ)y + 4sin3θz = 0
cos2θx + sin2θy + (1 + 4sin3θ)z = 0
has a non-trivial solution, then the value of θ is
______.
Options
`(4π)/9`
`π/18`
`(5π)/18`
`(7π)/18`
Solution
Let `θ∈(0, π/2)`. If the system of linear equations,
(1 + cos2θ)x + sin2θy + 4sin3θz = 0
cos2θx + (1 + sin2θ)y + 4sin3θz = 0
cos2θx + sin2θy + (1 + 4sin3θ)z = 0
has a non-trivial solution, then the value of θ is `underlinebb((7π)/18)`.
Explanation:
For non-trivial solution
`|(1 + cos2θ, sin^2θ, 4sin3θ),(cos^2θ, 1 + sin^2θ, 4sin3θ),(cos^2θ, sin^2θ, 1 + 4sin3θ)|` = 0
Apply R3→R3 – R2, we get
`|(1 + cos^2θ, sin^2θ, 4sin3θ),(cos^2θ, 1 + sin^2θ, 4sin3θ),(0, -1, 1)|` = 0
Apply C2→C2 – C3, we get
⇒ `|(1 + cos^2θ, sin^2θ + 4sin3θ, 4sin3θ),(cos^2θ, 1 + sin^2θ + 4sin3θ, 4sin3θ),(0, 0, 1)|` = 0
⇒ 2(1 + 2sin3θ) = 0
⇒ 2sin3θ = –1
⇒ sin3θ = `-1/2`
⇒ `3θ∈(0, (3π)/2)` as `θ∈(0, π/2)`
⇒ sin3θ = `sin(π + π/6) = sin((7π)/6)` ...[∵ sin is –ve, lies in third quardant]
⇒ 3θ = `(7π)/6`
⇒ θ = `(7π)/18`