Advertisements
Advertisements
Question
Let `(5 + 2sqrt(6))^n` = p + f where n∈N and p∈N and 0 < f < 1 then the value of f2 – f + pf – p is ______.
Options
a natural number
a negative integer
a prime number
an irrational number
MCQ
Fill in the Blanks
Solution
Let `(5 + 2sqrt(6))^n` = p + f where n∈N and p∈N and 0 < f < 1 then the value of f2 – f + pf – p is a negative integer.
Explanation:
`(5 + 2sqrt(6))^n` = p + f, n, p∈N, 0 < f < 1
Let f' = `(5 - 2sqrt(6))^n`, 0 < f' < 1
⇒ p + f + f' = `2(5^n + ""^nC_2 5^(n-2)(2sqrt(6))^2 + ...)`
⇒ 2k, k∈N
⇒ p + f + f' = Integer
⇒ f + f' = Integer – p = Integer
But 0 < f + f' < 2
⇒ f + f' = 1
⇒ f' = 1 – f
∴ f2 – f + pf – p = (f – 1)(p + f )
= – f'(p + f)
= `-(5 - 2sqrt(6))^n(5 + 2sqrt(6))^n`
= – (25 – 24)n
= –1
⇒ a negative integer.
shaalaa.com
Is there an error in this question or solution?