Advertisements
Advertisements
Question
Let A = `[(1, -1),(2, α)]` and B = `[(β, 1),(1, 0)]`, α, β ∈ R. Let α1 be the value of α which satisfies (A + B)2 = `A^2 + [(2, 2),(2, 2)]` and α2 be the value of α which satisfies (A + B)2 = B2 . Then |α1 – α2| is equal to ______.
Options
0
1
2
3
Solution
Let A = `[(1, -1),(2, α)]` and B = `[(β, 1),(1, 0)]`, α, β ∈ R. Let α1 be the value of α which satisfies (A + B)2 = `A^2 + [(2, 2),(2, 2)]` and α2 be the value of α which satisfies (A + B)2 = B2 . Then |α1 – α2| is equal to 2.
Explanation:
Now A + B = `[(β + 1, 0),(3, α)]`
`\implies` (A + B)2 = `[(β + 1, 0),(3, α)][(β + 1, 0),(3, α)]`
= `[((β + 1)^2, 0),(3(β + 1) + 3α, α^2)]`
Now A2 = `[(1, -1),(2, α)][(1, -1),(2, α)] = [(-1, -1- α),(2 + 2α, α^2 - 2)]`
∴ `[(1, -α + 1),(2α + 4, α^2)] = [((β + 1)^2, 0),(3(α + β + 1), α^2)]`
`\implies` α = 1 = α1
Now B2 = `[(β, 1),(1, 0)][(β, 1),(1, 0)] = [(β^2 + 1, β),(β, 1)]`
= `[((β + 1)^2, 0),(3(β + 1) + 3α, α^2)]`
∴ β = 0, α = –1 = α2
∴ |α1 – α2| = |1– (–1)| = 2