English

Let A = [aij] be a 3 × 3 matrix, where aij = ,,,{1,ifi=j-x,if|i-j|=12x+1, otherwise Let a function f: R→R be defined as f(x) = det(A). Then the sum of maximum -

Advertisements
Advertisements

Question

Let A = [aij] be a 3 × 3 matrix, where

aij = `{{:(1, "," if "i" = "j"),(-x, "," if |"i" - "j"| = 1),(2x + 1, ","    "otherwise"):}` 

Let a function f: R→R be defined as f(x) = det(A). Then the sum of maximum and minimum values of f on R is equal to ______.

Options

  • `20/27`

  • `-88/27`

  • `-20/27`

  • `88/27`

MCQ
Fill in the Blanks

Solution

Let A = [aij] be a 3 × 3 matrix, where

aij = `{{:(1, "," if "i" = "j"),(-x, "," if |"i" - "j"| = 1),(2x + 1, ","    "otherwise"):}` 

Let a function f: R→R be defined as f(x) = det(A). Then the sum of maximum and minimum values of f on R is equal to `underlinebb(-88/27)`.

Explanation:

|A| = `|(1, -x, 2x + 1),(-x, 1, -x),(2x + 1, -x, 1)|`

= 1(1 – x2) + x(–x + x(2x + 1)) + (2x + 1)(x2 –(2x + 1))

= 1 + x2(2x + 1) + x2(2x + 1) – (2x + 1)2 – x2 – x2

⇒ f(x) = 4x3 – 4x2 – 4x

⇒ f'(x) = 12x2 – 8x – 4

⇒ f'(x) = 4(3x2 – 2x – 1) = 4(x – 1)(3x + 1)

sign of f'

⇒ f(x) is maximum at x = `(-1)/3` and minimum at x = 1

Maximum value = `f((-1)/3) = 20/27`

Minimum value f(1) = –4

∴ Sum = `20/27 - 4 = (-88)/27`

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×