Advertisements
Advertisements
Question
Let A = [aij] be a square matrix of order 3 such that aij = 2j – i, for all i, j = 1, 2, 3. Then, the matrix A2 + A3 + ... + A10 is equal to ______.
Options
`((3^10 - 3)/2)A`
`((3^10 - 1)/2)A`
`((3^10 + 1)/2)A`
`((3^10 + 3)/2)A`
Solution
Let A = [aij] be a square matrix of order 3 such that aij = 2j – i, for all i, j = 1, 2, 3. Then, the matrix A2 + A3 + ... + A10 is equal to `underlinebb(((3^10 - 3)/2)A)`.
Explanation:
Given: aij = 2j – i
⇒ A = `[(2^(1 - 1), 2^(2 - 1), 2^(3 - 1)),(2^(1 - 2), 2^(2 - 2), 2^(3 - 2)), (2^(1 - 3), 2^(2 - 3), 2^(3 - 3))]`
⇒ A = `[(1, 2, 4),(1/2, 1, 2),(1/4, 1/2, 1)]`
Now, A2 = `[(1, 2, 4),(1/2, 1, 2),(1/4, 1/2, 1)][(1, 2, 4),(1/2, 1, 2),(1/4, 1/2, 1)]`
⇒ A2 = `[(1 + 1 + 1, 2 + 2 + 2, 4 + 4 + 4),(1/2 + 1/2 + 1/2, 1 + 1 + 1 ,2 + 2 + 2),(1/4 + 1/4 + 1/4, 1/2 + 1/2 + 1/2, 1 + 1 + 1)]`
⇒ A2 = `[(3, 6, 12),(3/2, 3, 6),(3/4, 3/2, 3)]`
⇒ A2 = `[(1, 2, 4),(1/2, 1, 2),(1/4, 1/2, 1)]`
⇒ A2 = 3A
Also, A3 = A2.A = 3A.A = 3A2 = 3(3A) = 32A
Similarly A4 = A3.A = 32A.A = 32(A2) = 32(3A) = 32A
⇒ A2 + A3 + A4 + ...... + A9 + A10 = 3A + 32A + 33A + ...... + 38A + 39A
= 3A(1 + 3 + 32 + ...... + 37 + 38)
= `3A(3^(9-1)/(3 - 1))`
= `3A(3^(9-1)/2)`
= `((3^10 - 3)/2)A`