Advertisements
Advertisements
Question
Let `veca, vecb` and `vecc` be three unit vectors such that `|veca - vecb|^2 + |veca - vecc|^2` = 8. Then find the value of `|veca + 2vecb|^2 + |veca + 2vecc|^2`
Options
0.00
1.00
2.00
3.00
MCQ
Solution
2.00
Explanation:
`|veca - vecb|^2 + |veca - vecc|^2` = 8
`|veca|^2 + |vecb|^2 - 2veca.vecb + |veca|^2 + |vecc|^2 - 2veca.vecc` = 8
`1 + 1 + 1 + 1 - 2(veca.vecb + veca.vecc)` = 8
`veca.vecb + veca.vecc` = –2 ...(i)
The value of `|veca + 2vecb|^2 + |veca + 2vecc|^2`
= `|veca|^2 + 4|vecb|^2 + 4veca.vecb + |veca|^2 + 4|vecc|^2 + 4veca.vecc`
= `1 + 4 + 1 + 4 + 4(veca.vecb + veca.vecc)`
= 10 + 4(–2)
= 10 – 8
= 2
shaalaa.com
Scalar Product and Vector Product
Is there an error in this question or solution?