Advertisements
Advertisements
Question
Let a, b, c be such that b(a + c) ≠ 0 if
`|(a, a + 1, a - 1),(-b, b + 1, b - 1),(c, c - 1, c + 1)| + |(a + 1, b + 1, c - 1),(a - 1, b - 1, c + 1),((-1)^(n + 2)a, (-1)^(n + 1)b, (-1)^n c)|` = 0, then the value of n is ______.
Options
any even integer
any odd integer
any integer
zero
Solution
Let a, b, c be such that b(a + c) ≠ 0 if
`|(a, a + 1, a - 1),(-b, b + 1, b - 1),(c, c - 1, c + 1)| + |(a + 1, b + 1, c - 1),(a - 1, b - 1, c + 1),((-1)^(n + 2)a, (-1)^(n + 1)b, (-1)^n c)|` = 0, then the value of n is any odd integer.
Explanation:
`|(a, a + 1, a - 1),(-b, b + 1, b - 1),(c, c - 1, c + 1)| + |(a + 1, b + 1, c - 1),(a - 1, b - 1, c + 1),((-1)^(n + 2)a, (-1)^(n + 1)b, (-1)^n c)|` = 0
Taking transpose of the second determinant
`\implies |(a, a + 1, a - 1),(-b, b + 1, b - 1),(c, c - 1, c + 1)| + |(a + 1, a - 1, (-1)^(n + 2)a),(b + 1, b - 1, (-1)^(n + 1)b),(c - 1, c + 1, (-1)^n c)|` = 0
Apply C1 `⇔` C3 in second determinant
`\implies |(a, a + 1, a - 1),(-b, b + 1, b - 1),(c, c - 1, c + 1)| - |((-1)^(n + 2)a, a - 1, a + 1),((-1)^(n + 2)(-b), b - 1, b + 1),((-1)^(n + 2)c, c + 1, c - 1)|` = 0
Apply C2 `⇔` C3 in second determinant
`\implies |(a, a + 1, a - 1),(-b, b + 1, b - 1),(c, c - 1, c + 1)| + (-1)^(n + 2) |(a, a + 1, a - 1),(-b, b + 1, b - 1),(c, c - 1, c + 1)|` = 0
`\implies [1 + (-1)^(n + 2)] |(a, a + 1, a - 1),(-b, b + 1, b - 1),(c, c - 1, c + 1)|` = 0
Apply C2 `rightarrow` C2 – C1, C3 `rightarrow` C3 – C1
`\implies [1 + (-1)^(n + 2)] |(a, 1, -1),(-b, 2b + 1, 2b - 1),(c, - 1, 1)|` = 0
Apply R1 `rightarrow` R1 + R3
`\implies [1 + (-1)^(n + 2)] |(a + c, 0, 0),(-b, 2b + 1, 2b - 1),(c, - 1, 1)|` = 0
`\implies` [1 + (–1)n + 2](a + c) (2b + 1 + 2b – 1) = 0
`\implies` 4b (a + c) [1 + (–1)n + 2] = 0
`\implies` 1 + (–1)n + 2 = 0 as b (a + c) ≠ 0
`\implies` n should be an odd integer.