English

Let a, b, c be such that b(a + c) ≠ 0 if |aa+1a-1-bb+1b-1cc-1c+1|+|a+1b+1c-1a-1b-1c+1(-1)n+2a(-1)n+1b(-1)nc| = 0, then the value of n is ______. -

Advertisements
Advertisements

Question

Let a, b, c be such that b(a + c) ≠ 0 if

`|(a, a + 1, a - 1),(-b, b + 1, b - 1),(c, c - 1, c + 1)| + |(a + 1, b + 1, c - 1),(a - 1, b - 1, c + 1),((-1)^(n + 2)a, (-1)^(n + 1)b, (-1)^n c)|` = 0, then the value of n is ______.

Options

  • any even integer

  • any odd integer

  • any integer

  • zero

MCQ
Fill in the Blanks

Solution

Let a, b, c be such that b(a + c) ≠ 0 if

`|(a, a + 1, a - 1),(-b, b + 1, b - 1),(c, c - 1, c + 1)| + |(a + 1, b + 1, c - 1),(a - 1, b - 1, c + 1),((-1)^(n + 2)a, (-1)^(n + 1)b, (-1)^n c)|` = 0, then the value of n is any odd integer.

Explanation:

`|(a, a + 1, a - 1),(-b, b + 1, b - 1),(c, c - 1, c + 1)| + |(a + 1, b + 1, c - 1),(a - 1, b - 1, c + 1),((-1)^(n + 2)a, (-1)^(n + 1)b, (-1)^n c)|` = 0

Taking transpose of the second determinant

`\implies |(a, a + 1, a - 1),(-b, b + 1, b - 1),(c, c - 1, c + 1)| + |(a + 1, a - 1, (-1)^(n + 2)a),(b + 1, b - 1, (-1)^(n + 1)b),(c - 1, c + 1, (-1)^n c)|` = 0

Apply C1 `⇔` C3 in second determinant

`\implies |(a, a + 1, a - 1),(-b, b + 1, b - 1),(c, c - 1, c + 1)| - |((-1)^(n + 2)a, a - 1, a + 1),((-1)^(n + 2)(-b), b - 1, b + 1),((-1)^(n + 2)c, c + 1, c - 1)|` = 0

Apply C2 `⇔` C3 in second determinant

`\implies |(a, a + 1, a - 1),(-b, b + 1, b - 1),(c, c - 1, c + 1)| + (-1)^(n + 2) |(a, a + 1, a - 1),(-b, b + 1, b - 1),(c, c - 1, c + 1)|` = 0

`\implies [1 + (-1)^(n + 2)] |(a, a + 1, a - 1),(-b, b + 1, b - 1),(c, c - 1, c + 1)|` = 0 

Apply C2 `rightarrow` C2 – C1, C3 `rightarrow` C3 – C1

`\implies [1 + (-1)^(n + 2)] |(a, 1, -1),(-b, 2b + 1, 2b - 1),(c, - 1, 1)|` = 0 

Apply R1 `rightarrow` R1 + R3

`\implies [1 + (-1)^(n + 2)] |(a + c, 0, 0),(-b, 2b + 1, 2b - 1),(c, - 1, 1)|` = 0 

`\implies` [1 + (–1)n + 2](a + c) (2b + 1 + 2b – 1) = 0

`\implies` 4b (a + c) [1 + (–1)n + 2] = 0

`\implies` 1 + (–1)n + 2 = 0 as b (a + c) ≠ 0

`\implies` n should be an odd integer.

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×