English

Let a→,b→,c→ be three mutually perpendicular vectors of the same magnitude and equally inclined at an angle θ, with the vector a→+b→+c→. Then, 36 cos22θ is equal to ______. -

Advertisements
Advertisements

Question

Let `veca, vecb, vecc` be three mutually perpendicular vectors of the same magnitude and equally inclined at an angle θ, with the vector `veca + vecb + vecc`. Then, 36 cos22θ is equal to ______.

Options

  • 1

  • 2

  • 3

  • 4

MCQ
Fill in the Blanks

Solution

Let `veca, vecb, vecc` be three mutually perpendicular vectors of the same magnitude and equally inclined at an angle θ, with the vector `veca + vecb + vecc`. Then, 36 cos22θ is equal to 4.

Explanation:

`|veca + vecb + vecc|^2 = (veca + vecb + vecc).(veca + vecb + vecc)`

= `|veca|^2 + |vecb|^2 + |vecc|^2 + 2(veca.vecb + veca.vecc + vecb.vecc)`

= `|veca|^2 + |vecb|^2 + |vecc|^2 + 0`

∴ `|veca + vecb + vecc|^2 = |veca|^2 + |vecb|^2 + |vecc|^2` = 3k2

∴ `|veca + vecb + vecc| = sqrt(3)k`

Now, `veca.(veca + vecb + vecc) = |veca||veca + vecb + vecc|cosθ`

`|veca.|^2 + veca.vecb + veca.vecc| = |veca||veca + vecb + vecc|cosθ`

⇒ k2 + 0 = `k xx sqrt(3)kcosθ`

⇒ cosθ = `1/sqrt(3)` ⇒ cos2θ = 2cos2θ – 1

⇒ cos2θ = `(-1)/3` ⇒ cos22θ = `1/9`

⇒ 36 cos22θ = 4

shaalaa.com
Scalar Product and Vector Product
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×