Advertisements
Advertisements
Question
Let `veca, vecb, vecc` be three mutually perpendicular vectors of the same magnitude and equally inclined at an angle θ, with the vector `veca + vecb + vecc`. Then, 36 cos22θ is equal to ______.
Options
1
2
3
4
Solution
Let `veca, vecb, vecc` be three mutually perpendicular vectors of the same magnitude and equally inclined at an angle θ, with the vector `veca + vecb + vecc`. Then, 36 cos22θ is equal to 4.
Explanation:
`|veca + vecb + vecc|^2 = (veca + vecb + vecc).(veca + vecb + vecc)`
= `|veca|^2 + |vecb|^2 + |vecc|^2 + 2(veca.vecb + veca.vecc + vecb.vecc)`
= `|veca|^2 + |vecb|^2 + |vecc|^2 + 0`
∴ `|veca + vecb + vecc|^2 = |veca|^2 + |vecb|^2 + |vecc|^2` = 3k2
∴ `|veca + vecb + vecc| = sqrt(3)k`
Now, `veca.(veca + vecb + vecc) = |veca||veca + vecb + vecc|cosθ`
`|veca.|^2 + veca.vecb + veca.vecc| = |veca||veca + vecb + vecc|cosθ`
⇒ k2 + 0 = `k xx sqrt(3)kcosθ`
⇒ cosθ = `1/sqrt(3)` ⇒ cos2θ = 2cos2θ – 1
⇒ cos2θ = `(-1)/3` ⇒ cos22θ = `1/9`
⇒ 36 cos22θ = 4