English

Let a, b, c ∈ R be all non-zero and satisfy a3 + b3 + c3 = 2. If the matrix A = (abcbcacab) satisfies ATA = I, then a value of abc can be ______. -

Advertisements
Advertisements

Question

Let a, b, c ∈ R be all non-zero and satisfy a3 + b3 + c3 = 2. If the matrix A = `((a, b, c),(b, c, a),(c, a, b))` satisfies ATA = I, then a value of abc can be ______.

Options

  • `-1/3`

  • `1/3`

  • 3

  • `2/3`

MCQ
Fill in the Blanks

Solution

Let a, b, c ∈ R be all non-zero and satisfy a3 + b3 + c3 = 2. If the matrix A = `((a, b, c),(b, c, a),(c, a, b))` satisfies ATA = I, then a value of abc can be `underlinebb(1/3)`.

Explanation:

Given: ATA = I

`\implies [(a, b, c),(b, c, a),(c, a, b)][(a, b, c),(b, c, a),(c, a, b)] = [(1, 0, 0),(0, 1, 0),(0, 0, 1)]`

`\implies [(suma^2, sumab, sumab),(sumab, suma^2, sumab),(sumab, sumab, suma^2)] = [(1, 0, 0),(0, 1, 0),(0, 0, 1)]`

So `suma^2` = 1 and `sumab` = 0

Now, a3 + b3 + c3 – 3abc

= (a + b + c)(a2 + b2 + c2 – ab – bc – ca)

= (a + b + c)(1 – 0)

= `sqrt((a + b + c)^2`

= `sqrt(suma^2 + 2sumab)`

= ±1

`\implies` 2 – 3abc = 1

`\implies` abc = `1/3`

or 2 – 3abc = –1

`\implies` abc = 1.

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×