Advertisements
Advertisements
Question
Let a, b, c ∈ R be all non-zero and satisfy a3 + b3 + c3 = 2. If the matrix A = `((a, b, c),(b, c, a),(c, a, b))` satisfies ATA = I, then a value of abc can be ______.
Options
`-1/3`
`1/3`
3
`2/3`
Solution
Let a, b, c ∈ R be all non-zero and satisfy a3 + b3 + c3 = 2. If the matrix A = `((a, b, c),(b, c, a),(c, a, b))` satisfies ATA = I, then a value of abc can be `underlinebb(1/3)`.
Explanation:
Given: ATA = I
`\implies [(a, b, c),(b, c, a),(c, a, b)][(a, b, c),(b, c, a),(c, a, b)] = [(1, 0, 0),(0, 1, 0),(0, 0, 1)]`
`\implies [(suma^2, sumab, sumab),(sumab, suma^2, sumab),(sumab, sumab, suma^2)] = [(1, 0, 0),(0, 1, 0),(0, 0, 1)]`
So `suma^2` = 1 and `sumab` = 0
Now, a3 + b3 + c3 – 3abc
= (a + b + c)(a2 + b2 + c2 – ab – bc – ca)
= (a + b + c)(1 – 0)
= `sqrt((a + b + c)^2`
= `sqrt(suma^2 + 2sumab)`
= ±1
`\implies` 2 – 3abc = 1
`\implies` abc = `1/3`
or 2 – 3abc = –1
`\implies` abc = 1.