Advertisements
Advertisements
Question
Let a, b ∈ R, b ≠ 0. Define a function
F(x) = `{{:(asin π/2(x - 1)",", "for" x ≤ 0),((tan2x - sin2x)/(bx^3)",", "for" x > 0):}`
If f is continuous at x = 0, then 10 – ab is equal to ______.
Options
13
14
15
16
Solution
Let a, b ∈ R, b ≠ 0. Define a function
F(x) = `{{:(asin π/2(x - 1)",", "for" x ≤ 0),((tan2x - sin2x)/(bx^3)",", "for" x > 0):}`
If f is continuous at x = 0, then 10 – ab is equal to 14.
Explanation:
If function is continuous at x = 0
Then, LHL = RHL = f(0)
LHL = –a
RHL = `lim_(x→0) (tan2x - sin2x)/(bx^3)`
Since, sinx = `x - x^3/(3!) + x^5/(5!) + ....`
tanx = `x + x^3/3 + (2x^5)/15 + ...`
∴ RHL = `lim_(x→0^+) ((2x)^3/3 + (2x)^3/6)/(bx^3) = (8/3 + 8/6)/b = 4/b`
∴ f(0) = `asin[π/2(0 - 1)] = asin((-π)/2)` = –a
⇒ LHL = RHL = f(0)
⇒ `4/b` = –a
⇒ –ab = 4
⇒ 10 – ab = 14