Advertisements
Advertisements
Question
Let 'A' be a square matrix of order 3 × 3, then |KA| is equal to:
Options
`k^2 |A|`
`k^3 |A|`
`3k |A|`
`k |A|`
MCQ
Solution
`k^3 |A|`
Explanation:
Since 'A' is a square matrix of order 3 × 3
Let A = `[(a_1, b_1, c_1),(a_2, b_2, c_2),(a_3, b_3, c_3)]`
Then, KA = `[(ka_1, kb_1, kc_1),(ka_2, kb_2, kc_2),(ka_3, kb_3, kc_3)]` ⇒ ∴ |KA|
`[(ka_1, kb_1, kc_1),(ka_2, kb_2, kc_2),(ka_3, kb_3, kc_3)]`
= `k^3 [(a_1, b_1, c_1),(a_2, b_2, c_2),(a_3, b_3, c_3)]`
= `k^3 |A|`
∴ |KA| = `k^3A`
shaalaa.com
Is there an error in this question or solution?