English

Let a→=i^+j^+k^ and b→=j^-k^. If c→ is a vector such that a→.c→=b→ and a→.c→ = 3, then a→.(b→.c→) is equal to ______. -

Advertisements
Advertisements

Question

Let `veca = hati + hatj + hatk` and `vecb = hatj - hatk`. If `vecc` is a vector such that `veca.vecc = vecb` and `veca.vecc` = 3, then `veca.(vecb.vecc)` is equal to ______.

Options

  • –2

  • 6

  • 2

  • –6

MCQ
Fill in the Blanks

Solution

Let `veca = hati + hatj + hatk` and `vecb = hatj - hatk`. If `vecc` is a vector such that `veca.vecc = vecb` and `veca.vecc` = 3, then `veca.(vecb.vecc)` is equal to –2.

Explanation:

Given, `veca xx vecc = vecb`

⇒ `-(vecc xx veca) = vecb`

⇒ `vecc xx veca = vecb`

Here, `veca = hati + hatj + hatk` and `vecb = hatj - hatk`

Now, `veca.(vecb xx vecc)`

= `[(veca, vecb, vecc)]`

= `[(vecb, vecc, veca)]`

= `vecb.(vecc xx veca)`

= `vecb.(-vecb)`

= `-|vecb|^2`

= `-(sqrt((1)^2 + (-1)^2))^2`  ...`[(∵ |vecb|  = sqrt((1)^2 + (-1)^2)),(= sqrt(2))]`

= `-(sqrt(2))^2`

= –2

shaalaa.com
Vector Triple Product
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×