Advertisements
Advertisements
Question
Let `veca = hati + hatj + hatk` and `vecb = hatj - hatk`. If `vecc` is a vector such that `veca.vecc = vecb` and `veca.vecc` = 3, then `veca.(vecb.vecc)` is equal to ______.
Options
–2
6
2
–6
MCQ
Fill in the Blanks
Solution
Let `veca = hati + hatj + hatk` and `vecb = hatj - hatk`. If `vecc` is a vector such that `veca.vecc = vecb` and `veca.vecc` = 3, then `veca.(vecb.vecc)` is equal to –2.
Explanation:
Given, `veca xx vecc = vecb`
⇒ `-(vecc xx veca) = vecb`
⇒ `vecc xx veca = vecb`
Here, `veca = hati + hatj + hatk` and `vecb = hatj - hatk`
Now, `veca.(vecb xx vecc)`
= `[(veca, vecb, vecc)]`
= `[(vecb, vecc, veca)]`
= `vecb.(vecc xx veca)`
= `vecb.(-vecb)`
= `-|vecb|^2`
= `-(sqrt((1)^2 + (-1)^2))^2` ...`[(∵ |vecb| = sqrt((1)^2 + (-1)^2)),(= sqrt(2))]`
= `-(sqrt(2))^2`
= –2
shaalaa.com
Vector Triple Product
Is there an error in this question or solution?