English

Let a ∈ R be such that the function f(x) = ,α,{cos-1(1-{x}2)sin-1(1-{x}){x}-{x}3,x≠0α,x=0 is continuous at x = 0, where {x} = x – [x], [x] is the greatest integer less than or equal to x. -

Advertisements
Advertisements

Question

Let α ∈ R be such that the function

f(x) = `{{:((cos^-1(1 - {x}^2)sin^-1(1 - {x}))/({x} - {x}^3)",", x ≠ 0),(α",", x = 0):}`

is continuous at x = 0, where {x} = x – [x], [x] is the greatest integer less than or equal to x.

Options

  • No such α exists

  • α = `π/sqrt(2)`

  • α = 0

  • α = `π/4`

MCQ

Solution

No such α exists

Explanation:

We know that when x `rightarrow` 0, then {x} = 1 – h where h `rightarrow` 0

LHL = `lim_(h rightarrow 0) (cos^-1(1 - (1 - h)^2)sin^-1(h))/((1 - h)(1 - (1 - h)^2)`

= `lim_(h rightarrow 0) (cos^-1(1 - (1 - h)^2)sin^-1(h))/((1 - h)h(2 - h)`

= `(π/2 xx 1)/(1 xx 2)`

= `π/4`

and when x `rightarrow` 0+ then {x} = h where h `rightarrow` 0

RHL = `lim_(h rightarrow 0) (cos^-1(1 - h^2)sin^-1(1 - h))/(h - h^3)`

= `lim_(h rightarrow 0) (sin^-1sqrt(1 - (1 - h^2)^2) sin^-1(1 - h))/(h(1 - h^2))`

= `lim_(h rightarrow 0) (sin^-1(hsqrt(2 - h^2)) sin^-1(1 - h))/(h(1 - h^2))`

= `lim_(h rightarrow 0) (sin^-1(hsqrt(2 - h^2)))/(hsqrt(2 - h^2)) xx (hsqrt(2 - h^2))/(h(1 - h^2)) xx sin^-1(1 - h)`

= `1 xx sqrt(2)/1 xx π/2`

= `π/sqrt(2)`

LHL ≠ RHL

So, f(x) is discontinuous at x = 0.

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×