English

Let aa¯ and bb¯ be two unit vectors. If the vectors cabc¯=a¯+2b¯ and dabd¯= 5a¯ -4b¯ are perpendicular to each other, then the angle between aa¯ and bb¯ is ______. -

Advertisements
Advertisements

Question

Let `bar"a"` and `bar"b"` be two unit vectors. If the vectors `bar"c" = bar"a" + 2bar"b"` and `bar"d" =  5bar"a"  - 4bar"b"` are perpendicular to each other, then the angle between `bar"a"`  and `bar"b"` is ______.

Options

  • `pi/6`

  • `pi/2`

  • `pi/3`

  • `pi/4`

MCQ
Fill in the Blanks

Solution

Let `bar"a"` and `bar"b"` be two unit vectors. If the vectors `bar"c" = bar"a" + 2bar"b"` and `bar"d" =  5bar"a"  - 4bar"b"` are perpendicular to each other, then the angle between `bar"a"`  and `bar"b"` is `pi/3`.

Explanation:

Let θ be the angle between `bar"a"` and `bar"b"`.

Sine, `bar"c" = bar"a" + 2bar"b"` and `bar"d" = 5bar"a" - bar"b"` are erpendicular to each other.

∴ `bar"c"*bar"d"` = 0

⇒ `(bar"a" + 2bar"b")*(5bar"a" - 4bar"b")` = 0

⇒ `5(bar"a"*bar"a") + 6(bar"a"*bar"b") - 8(bar"b"*bar"b")` = 0

⇒ `5|bar"a"|^2 + 6|bar"a"||bar"b"|costheta - 8|bar"b"|^2` = 0

⇒ `5 + 6 cos theta - 8` = 0

⇒ `cos theta = 1/2`

⇒ θ = `pi/3`

shaalaa.com
Scalar Product of Vectors (Dot)
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×