Advertisements
Advertisements
Question
Let `bar"a"` and `bar"b"` be two unit vectors. If the vectors `bar"c" = bar"a" + 2bar"b"` and `bar"d" = 5bar"a" - 4bar"b"` are perpendicular to each other, then the angle between `bar"a"` and `bar"b"` is ______.
Options
`pi/6`
`pi/2`
`pi/3`
`pi/4`
Solution
Let `bar"a"` and `bar"b"` be two unit vectors. If the vectors `bar"c" = bar"a" + 2bar"b"` and `bar"d" = 5bar"a" - 4bar"b"` are perpendicular to each other, then the angle between `bar"a"` and `bar"b"` is `pi/3`.
Explanation:
Let θ be the angle between `bar"a"` and `bar"b"`.
Sine, `bar"c" = bar"a" + 2bar"b"` and `bar"d" = 5bar"a" - bar"b"` are erpendicular to each other.
∴ `bar"c"*bar"d"` = 0
⇒ `(bar"a" + 2bar"b")*(5bar"a" - 4bar"b")` = 0
⇒ `5(bar"a"*bar"a") + 6(bar"a"*bar"b") - 8(bar"b"*bar"b")` = 0
⇒ `5|bar"a"|^2 + 6|bar"a"||bar"b"|costheta - 8|bar"b"|^2` = 0
⇒ `5 + 6 cos theta - 8` = 0
⇒ `cos theta = 1/2`
⇒ θ = `pi/3`