English

Let α and β be such that π < α – β < 3π. If sin α + sin β = -2165 and cos α + cos β = -2765, then the value of αβcos (α-β)2 is ______. -

Advertisements
Advertisements

Question

Let α and β be such that π < α – β < 3π. If sin α + sin β = -2165 and cos α + cos β = -2765, then the value of cos (α-β)2 is ______.

Options

  • -3130

  • 3130

  • 665

  • -665

MCQ
Fill in the Blanks

Solution

Let α and β be such that π < α – β < 3π. If sin α + sin β = -2165 and cos α + cos β = -2765, then the value of cos (α-β)2 is -3130̲.

Explanation:

Given, sin α + sin β = -2165  ...(i)

and cos α + cos β = -2765  ...(ii)

On squaring and adding equations (i) and (ii), we get

(sin α + sin β)2 + (cos α + cos β)2 = (-2165)2+(-2765)2

sin2α + sin2 β + 2 sin α sin β + cos2 α + cos2 β + 2 cos α cos β = 4414225+7294225

2 + 2 cos (α – β) = 11704225

2[2cos2(α-β2)]=11704225

cos2(α-β2)=11704×4225=9130

cos(α-β2)=-3130  ...[∵ π < α – β < 3π]

shaalaa.com
Trigonometric Functions of Triple Angle
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.