Advertisements
Advertisements
Question
Let E1 and E2 be two independent events. Let P(E) denotes the probability of the occurrence of the event E. Further, let E'1 and E'2 denote the complements of E1 and E2, respectively. If P(E'1 ∩ E2) = `2/15` and P(E1 ∩ E'2) = `1/6`, then P(E1) is
Options
`2/15`
`13/15`
`2/13`
`1/5`
MCQ
Solution
`1/5`
Explanation:
Let P(E1) = m ⇒ P(E11) = 1 – m
Given that , P(E11 ∩ E2) = P(E11) . P(E2) = `2/15`
⇒ (1 – m)P(E2) = `2/15` ⇒ P(E2) = `2/(15(1 - m))`
and P(E1 ∩ E21) = `1/6` ⇒ P(E1) . P(E21) = `1/6`
⇒ `m(1 - 2/(15(1 - m))) = 1/6`
⇒ `6m [15(1 - m) - 2] = 15(1 - m)`
⇒ `2m(13 - 15 m) = 5 - 5m`
⇒ `30m^2 - 31m + 5` = 0
⇒ `m = 5/6` or `1/5`
⇒ P(E1) = `5/6` or `1/5`.
shaalaa.com
Is there an error in this question or solution?