English

Let E1 and E2 be two independent events. Let P(E) denotes the probability of the occurrence of the event E. Further, let E'1 and E'2 denote the complements of E1 and E2, respectively. If P(E'1 ∩ E2) -

Advertisements
Advertisements

Question

Let E1 and E2 be two independent events. Let P(E) denotes the probability of the occurrence of the event E. Further, let E'1 and E'2 denote the complements of E1 and E2, respectively. If P(E'1 ∩ E2) = `2/15` and P(E1 ∩ E'2) = `1/6`, then P(E1) is

Options

  • `2/15`

  • `13/15`

  • `2/13`

  • `1/5`

MCQ

Solution

`1/5`

Explanation:

Let P(E1) = m ⇒ P(E11) = 1 – m

Given that , P(E11 ∩ E2) = P(E11) . P(E2) = `2/15`

⇒ (1 – m)P(E2) = `2/15` ⇒ P(E2) = `2/(15(1 - m))`

and P(E1 ∩ E21) = `1/6` ⇒ P(E1) . P(E21) = `1/6`

⇒ `m(1 - 2/(15(1 - m))) = 1/6`

⇒ `6m [15(1 - m) - 2] = 15(1 - m)`

⇒ `2m(13 - 15 m) = 5 - 5m`

⇒ `30m^2 - 31m + 5` = 0

⇒ `m = 5/6` or `1/5`

⇒ P(E1) = `5/6` or `1/5`.

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×