Advertisements
Advertisements
Question
Let EC denote the complement of an event E. Let E1, E2 and E3 be any pairwise independent events with P(E1) > 0 and P(E1 ∩ E2 ∩ E3) = 0. Then `"P"(("E"_2^"C" ∩ "E"_3^"C")/"E"_1)` is equal to ______.
Options
`"P"("E"_2^"C") + "P"("E"_3)`
`"P"("E"_3^"C") - "P"("E"_2^"C")`
`"P"("E"_3) - "P"("E"_2^"C")`
`"P"("E"_3^"C") - "P"("E"_2)`
Solution
Let EC denote the complement of an event E. Let E1, E2 and E3 be any pairwise independent events with P(E1) > 0 and P(E1 ∩ E2 ∩ E3) = 0. Then `"P"(("E"_2^"C" ∩ "E"_3^"C")/"E"_1)` is equal to `underlinebb("P"("E"_3^"C") - "P"("E"_2))`.
Explanation:
Given, E1, E2, E3 are pairwise independent events
So, P(E1 ∩ E2) = P(E1).P(E2);
P(E2 ∩ E3) = P(E2).P(E3);
P(E3 ∩ E1) = P(E3).P(E1);
and P(E1 ∩ E2 ∩ E3) = 0
`"P"(("E"_2^"C" ∩ "E"_3^"C")/"E"_1) = ("P"["E"_1 ∩ ("E"_2^"C" ∩ "E"_3^"C")])/("P"("E"_1))`
= `("P"("E"_1) - "P"["E"_1 ∩ ("E"_2 ∪ "E"_3)])/("P"("E"_1))` ...[∵ P(A ∩ BC) = P(A) – P(A) – P(A ∩ B)]
= `("P"("E"_1) - "P"[("E"_1 ∩ "E"_2) ∪ ("E"_1 ∩ "E"_3)])/("P"("E"_1))`
= `("P"("E"_1) - ["P"("E"_1 ∩ "E"_2) + "P"("E"_1 ∩ "E"_3) - "P"("E"_1 ∩ "E"_2 ∩ "E"_3)])/("P"("E"_1))`
= `("P"("E"_1) - "P"("E"_1 ∩ "E"_2) - "P"("E"_1 ∩ "E"_3) + 0)/("P"("E"_1))`
= 1 – P(E2) – P(E3) ...[∵ P(A ∩ B) = P(A).P(B)]
= `"P"("E"_2^"C") - "P"("E"_3)` or `"P"("E"_3^"C") - "P"("E"_2)`