English

Let EC denote the complement of an event E. Let E1, E2 and E3 be any pairwise independent events with P(E1) > 0 and P(E1 ∩ E2 ∩ E3) = 0. Then PECECEP(E2C ∩E3CE1) is equal to ______. -

Advertisements
Advertisements

Question

Let EC denote the complement of an event E. Let E1, E2 and E3 be any pairwise independent events with P(E1) > 0 and P(E1 ∩ E2 ∩ E3) = 0. Then `"P"(("E"_2^"C"  ∩ "E"_3^"C")/"E"_1)` is equal to ______.

Options

  • `"P"("E"_2^"C") + "P"("E"_3)`

  • `"P"("E"_3^"C") - "P"("E"_2^"C")`

  • `"P"("E"_3) - "P"("E"_2^"C")`

  • `"P"("E"_3^"C") - "P"("E"_2)`

MCQ
Fill in the Blanks

Solution

Let EC denote the complement of an event E. Let E1, E2 and E3 be any pairwise independent events with P(E1) > 0 and P(E1 ∩ E2 ∩ E3) = 0. Then `"P"(("E"_2^"C"  ∩ "E"_3^"C")/"E"_1)` is equal to `underlinebb("P"("E"_3^"C") - "P"("E"_2))`.

Explanation:

Given, E1, E2, E3 are pairwise independent events

So, P(E1 ∩ E2) = P(E1).P(E2);

P(E2 ∩ E3) = P(E2).P(E3);

P(E3 ∩ E1) = P(E3).P(E1);

and P(E1 ∩ E2 ∩ E3) = 0

`"P"(("E"_2^"C" ∩ "E"_3^"C")/"E"_1) = ("P"["E"_1 ∩ ("E"_2^"C" ∩ "E"_3^"C")])/("P"("E"_1))`

= `("P"("E"_1) - "P"["E"_1 ∩ ("E"_2 ∪ "E"_3)])/("P"("E"_1))`  ...[∵ P(A ∩ BC) = P(A) – P(A) – P(A ∩ B)]

= `("P"("E"_1) - "P"[("E"_1 ∩ "E"_2) ∪ ("E"_1 ∩ "E"_3)])/("P"("E"_1))`

= `("P"("E"_1) - ["P"("E"_1 ∩ "E"_2) + "P"("E"_1 ∩ "E"_3) - "P"("E"_1 ∩ "E"_2 ∩ "E"_3)])/("P"("E"_1))`

= `("P"("E"_1) - "P"("E"_1 ∩ "E"_2) - "P"("E"_1 ∩ "E"_3) + 0)/("P"("E"_1))`

= 1 – P(E2) – P(E3)  ...[∵ P(A ∩ B) = P(A).P(B)]

= `"P"("E"_2^"C") - "P"("E"_3)` or `"P"("E"_3^"C") - "P"("E"_2)`

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×