Advertisements
Advertisements
Question
Let f: (0,2)→R be defined as f(x) = `log_2(1 + tan((πx)/4))`. Then, `lim_(n→∞) 2/n(f(1/n) + f(2/n) + ... + f(1))` is equal to ______.
Options
0
1
2
3
Solution
Let f: (0,2)→R be defined as f(x) = `log_2(1 + tan((πx)/4))`. Then, `lim_(n→∞) 2/n(f(1/n) + f(2/n) + ... + f(1))` is equal to 1.
Explanation:
f: (0,2)→R
f(x) = `log_2(1 + tan((πx)/4))` ...(i)
We have to find the value of `lim_(n→∞) 2/n(f(1/n) + f(2/n) + ... + f(1))`
Let, L = `lim_(n→∞)(2(sum_(r = 1)^n(1/n)f(r/n)))`
By replacing `1/n→dx, r/n→x, lim_(n→∞)sum→int`
Lower limit = `lim_(n→∞)(1/n)` = 0
Upper limit = `lim_(n→∞)(1/n)` = 1
We get,
L = `2int_0^1f(x)dx` ...(ii)
Now using equation (i) and (ii)
L = `2int_0^1log_2(1 + tan((πx)/4))dx`
Using, logax = `(In x)/(In a)` we can write
L = `2int_0^1((In(1 + tan ((πx)/4)))/(In2))dx`
⇒ L = `2/(In 2)int_0^1 In(1 + tan((πx)/4))dx` ...(iii)
Now using the property
`int_a^bf(x)dx= int_a^bf(a + b - x)dx`,
We can write
⇒ L = `2/(In2)int_0^1 In(1 + tan((π(1 - x))/4))dx`
⇒ L = `2/(In2)int_0^1 In(1 + tan(π/4 - (πx)/4))dx`
⇒ L = `2/(In2)int_0^1 In(1 + (tan π/4 - tan (πx)/4)/(1 + tan π/4.tan (πx)/4))dx`
⇒ L = `2/(In2)int_0^1 In(1 + (1 - tan (πx)/4)/(1 + tan (πx)/4))dx`
⇒ L = `2/(In2) int_0^1 In(2/(1 + tan (πx)/4))dx` ...(iv)
After adding equation (iii) and (iv), we get
⇒ 2L = `2/(In2)int_0^1{In(1 + tan (πx)/4) + In(2/(1 + tan (πx)/4))}dx`
⇒ L = `1/(In 2)int_0^1 In 2dx`
⇒ L = `int_0^1dx`
⇒ L = `(x)_0^1`
⇒ L = 1 – 0
⇒ L = 1