English

Let f(1) = –2 and f'(x) ≥ 4.2 for 1 ≤ x ≤ 6. The possible value of f(6) lies in the interval ______. -

Advertisements
Advertisements

Question

Let f(1) = –2 and f'(x) ≥ 4.2 for 1 ≤ x ≤ 6. The possible value of f(6) lies in the interval ______. 

Options

  • [15, 19)

  • (– ∞, 12)

  • [12, 15)

  • [19, ∞)

MCQ
Fill in the Blanks

Solution

Let f(1) = –2 and f'(x) ≥ 4.2 for 1 ≤ x ≤ 6. The possible value of f(6) lies in the interval [19, ∞)

Explanation:

Given f(1) = –2 and f'(x) ≥ 4.2 for 1 ≤ x ≤ 6

Consider f'(x) = `(f(x + h) - f(x))/h`

⇒ f(x + h) – f(x) = f'(x) . h ≥ (4.2)h

So, f(x + h) ≥ f(x) + (4.2)h

Put x = 1 and h = 5, we get

f(6) ≥ f(1) + 5(4.2)

⇒ f(6) ≥ 19

Hence f(6) lies in [19, ∞)

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×