Advertisements
Advertisements
Question
Let f: R→R and f be a differentiable function such that f(x + 2y) = f(x) + 4f(y) + 2y(2x – 1) ∀ x, y ∈ R and f’(0) = 1, then f(3) + f’(3) is ______.
Options
16.00
17.00
18.00
19.00
MCQ
Fill in the Blanks
Solution
Let f: R→R and f be a differentiable function such that f(x + 2y) = f(x) + 4f(y) + 2y(2x – 1) ∀ x, y ∈ R and f’(0) = 1, then f(3) + f’(3) is 19.00.
Explanation:
Put x = y = 0
⇒ f(0) = 0
f’(x) = `lim_(h→0)(f(x + h) - f(x))/h`
= `lim_(h→0) (f(x) + 4f(h/2) + h(2x - 1) - f(x))/h`
f’(x) = `lim_(h→0) (4f(h/2) - 4f(0) + h(2x - 1))/h`
f’(x) = 2f’(0) + (2x – 1)
⇒ f’(x) = 2x + 1
⇒ f(x) = x2 + x
Now, f(3) + f’(3) = 12 + 7 = 19
shaalaa.com
Is there an error in this question or solution?