English

Let f: R→R be a continuous function such that f(x) + f(x + 1) = 2, for all x ∈ R. If I1 = ∫08f(x)dx and I2 = ∫-13f(x)dx, then the value of I1 + 2I2 is equal to ______. -

Advertisements
Advertisements

Question

Let f: R→R be a continuous function such that f(x) + f(x + 1) = 2, for all x ∈ R. If I1 = `int_0^8f(x)dx` and I2 = `int_(-1)^3f(x)dx`, then the value of I1 + 2I2 is equal to ______.

Options

  • 15

  • 16

  • 17

  • 18

MCQ
Fill in the Blanks

Solution

Let f: R→R be a continuous function such that f(x) + f(x + 1) = 2, for all x ∈ R. If I1 = `int_0^8f(x)dx` and I2 = `int_(-1)^3f(x)dx`, then the value of I1 + 2I2 is equal to 16.

Explanation:

Given that f: R→R is continuous if

f(x) + f(x + 1) = 2  ...(i)

Replace x by x + 1

f(x + 1) + f(x + 2) = 2  ...(ii)

Now, from equation (ii) – (i), we have

f(x + 1) + f(x + 2) – f(x) – f(x + 1) = 2 – 2

⇒ f(x + 2) – f(x) = 0

⇒ f(x) = f(x + 2)  ...(iii)

If f(x) = f(x + T) then f(x) will be a periodic function with period T.

Using the concept we can say that given function is periodic with period 2.

Now, I1 = `int_0^8f(x)dx`

⇒ I1 = `int_0^(2 xx 4) f(x)dx`

⇒ I1 = `4int_0^2 f(x)dx`  ...(iv)

Also I2 = `int_(-1)^3 f(x)dx`

⇒ I2 = `int_0^4 f(x + 1)dx`

Using Equation (i)

I2 = `int_0^4 (2 - f(x))dx`

⇒ I2 = `int_0^4 2dx - int_0^4 f(x)dx`

⇒ I2 = `2int_0^4 dx - int_0^4 f(x)dx`

⇒ I2 = `2(x)_0^4 - int_0^(2 xx 2) f(x)dx`

⇒ I2 = `2(4 - 0) - 2int_0^2f(x)dx`

Now Using Equation (iv)

⇒ I2 = `8 - 2(I_1/4)`

⇒ I2 = `8 - I_1/2`

⇒ 2I2 = 16 – I1

⇒ I2 + 2I2 = 16

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×