Advertisements
Advertisements
Question
Let f: R→R be a continuous function such that f(x) + f(x + 1) = 2, for all x ∈ R. If I1 = `int_0^8f(x)dx` and I2 = `int_(-1)^3f(x)dx`, then the value of I1 + 2I2 is equal to ______.
Options
15
16
17
18
Solution
Let f: R→R be a continuous function such that f(x) + f(x + 1) = 2, for all x ∈ R. If I1 = `int_0^8f(x)dx` and I2 = `int_(-1)^3f(x)dx`, then the value of I1 + 2I2 is equal to 16.
Explanation:
Given that f: R→R is continuous if
f(x) + f(x + 1) = 2 ...(i)
Replace x by x + 1
f(x + 1) + f(x + 2) = 2 ...(ii)
Now, from equation (ii) – (i), we have
f(x + 1) + f(x + 2) – f(x) – f(x + 1) = 2 – 2
⇒ f(x + 2) – f(x) = 0
⇒ f(x) = f(x + 2) ...(iii)
If f(x) = f(x + T) then f(x) will be a periodic function with period T.
Using the concept we can say that given function is periodic with period 2.
Now, I1 = `int_0^8f(x)dx`
⇒ I1 = `int_0^(2 xx 4) f(x)dx`
⇒ I1 = `4int_0^2 f(x)dx` ...(iv)
Also I2 = `int_(-1)^3 f(x)dx`
⇒ I2 = `int_0^4 f(x + 1)dx`
Using Equation (i)
I2 = `int_0^4 (2 - f(x))dx`
⇒ I2 = `int_0^4 2dx - int_0^4 f(x)dx`
⇒ I2 = `2int_0^4 dx - int_0^4 f(x)dx`
⇒ I2 = `2(x)_0^4 - int_0^(2 xx 2) f(x)dx`
⇒ I2 = `2(4 - 0) - 2int_0^2f(x)dx`
Now Using Equation (iv)
⇒ I2 = `8 - 2(I_1/4)`
⇒ I2 = `8 - I_1/2`
⇒ 2I2 = 16 – I1
⇒ I2 + 2I2 = 16