Advertisements
Advertisements
Question
Let f: R→R be a polynomial function satisfying f(x + y) = f(x) + f(y) + 3xy(x + y) –1 ∀ x, y ∈ R and f'(0) = 1, then `lim_(x→∞)(f(2x))/(f(x)` is equal to ______.
Options
6.00
7.00
8.00
9.00
MCQ
Fill in the Blanks
Solution
Let f: R→R be a polynomial function satisfying f(x + y) = f(x) + f(y) + 3xy(x + y) –1 ∀ x, y ∈ R and f'(0) = 1, then `lim_(x→∞)(f(2x))/(f(x)` is equal to 8.00.
Explanation:
f'(x) = `lim_(h→0)(f(x + h) - f(x))/h`
= `lim_(h→0)(f(h) + 3hx^2 + 3xh^2 - 1)/h`
∵ At x = y = 0 in functional rule: f(0) = 1
∴ f’(x) = f’(0) + 3x2 + 0
⇒ f’(x) = 3x2 + 1
⇒ f(x) = x3 + x + C
∵ f(0) = 1
⇒ f(x) = x3 + x + 1
`lim_(x→∞) (f(2x))/(f(x))` = 8
shaalaa.com
Is there an error in this question or solution?