English

Let f: R→R be a polynomial function satisfying f(x + y) = f(x) + f(y) + 3xy(x + y) –1 ∀ x, y ∈ R and f'(0) = 1, then limx→∞f(2x)f(x) is equal to ______. -

Advertisements
Advertisements

Question

Let f: R→R be a polynomial function satisfying f(x + y) = f(x) + f(y) + 3xy(x + y) –1 ∀ x, y ∈ R and f'(0) = 1, then `lim_(x→∞)(f(2x))/(f(x)` is equal to ______.

Options

  • 6.00

  • 7.00

  • 8.00

  • 9.00

MCQ
Fill in the Blanks

Solution

Let f: R→R be a polynomial function satisfying f(x + y) = f(x) + f(y) + 3xy(x + y) –1 ∀ x, y ∈ R and f'(0) = 1, then `lim_(x→∞)(f(2x))/(f(x)` is equal to 8.00.

Explanation:

f'(x) = `lim_(h→0)(f(x + h) - f(x))/h`

= `lim_(h→0)(f(h) + 3hx^2 + 3xh^2 - 1)/h`

∵ At x = y = 0 in functional rule: f(0) = 1

∴ f’(x) = f’(0) + 3x2 + 0

⇒ f’(x) = 3x2 + 1

⇒ f(x) = x3 + x + C

∵ f(0) = 1

⇒ f(x) = x3 + x + 1

`lim_(x→∞) (f(2x))/(f(x))` = 8

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×