Advertisements
Advertisements
Question
Let f : R `rightarrow` R be a positive increasing function with `lim_(x rightarrow ∞) (f(3x))/(f(x))` = 1 then `lim_(x rightarrow ∞) (f(2x))/(f(x))` = ______.
Options
`2/3`
`3/2`
3
1
MCQ
Fill in the Blanks
Solution
Let f : R `rightarrow` R be a positive increasing function with `lim_(x rightarrow ∞) (f(3x))/(f(x))` = 1 then `lim_(x rightarrow ∞) (f(2x))/(f(x))` = 1.
Explanation:
Given that f(x) is a positive increasing function.
∴ 0 < f(x) < f(2x) < f(3x)
Divided by f(x)
⇒ `0 < 1 < (f(2x))/(f(x)) < (f(3x))/(f(x))`
⇒ `lim_(x rightarrow ∞) 1 ≤ lim_(x rightarrow ∞) (f(2x))/(f(x)) ≤ lim_(x rightarrow ∞) (f(3x))/(f(x))`
By Sandwich Theorem,
⇒ `lim_(x rightarrow ∞) (f(2x))/(f(x))` = 1
shaalaa.com
Is there an error in this question or solution?