Advertisements
Advertisements
Question
Let f(x) = `(1 - tan x)/(4x - pi), x ne pi/4, x ∈ [0, pi/2]`. If f(x) is continuous in `[0, pi/2]`, then f`(pi/4)` is ______.
Options
- 1
`1/2`
`- 1/2`
1
MCQ
Fill in the Blanks
Solution
Let f(x) = `(1 - tan x)/(4x - pi), x ne pi/4, x ∈ [0, pi/2]`. If f(x) is continuous in `[0, pi/2]`, then f`(pi/4)` is `underline(- 1/2)`.
Explanation:
Since, f(x) is continuous in `[0, pi/2]`.
∴ It IS contmuous at x = `pi/4`.
∴ f`(pi/4) = lim_(x ->pi/4) "f"(x) = lim_(x ->pi/4) (1 - tan x)/(4x - pi)`
Applying L'Hospital rule on R.H.S., we get
f`(pi/4) = lim_(x ->pi/4) (- sec^2 x)/4`
`=> "f"(pi/4) = (- 2)/4 = (- 1)/2`
shaalaa.com
Differentiation
Is there an error in this question or solution?