English

Let f(x) = 1-tanx4x-π,x≠π4,x∈[0,π2]. If f(x) is continuous in [0,π2], then f(π4) is ______. -

Advertisements
Advertisements

Question

Let f(x) = `(1 - tan x)/(4x - pi), x ne pi/4, x ∈ [0, pi/2]`. If f(x) is continuous in `[0, pi/2]`, then f`(pi/4)` is ______.

Options

  • - 1

  • `1/2`

  • `- 1/2`

  • 1

MCQ
Fill in the Blanks

Solution

Let f(x) = `(1 - tan x)/(4x - pi), x ne pi/4, x ∈ [0, pi/2]`. If f(x) is continuous in `[0, pi/2]`, then f`(pi/4)` is `underline(- 1/2)`.

Explanation:

Since, f(x) is continuous in `[0, pi/2]`.

∴ It IS contmuous at x = `pi/4`.

∴ f`(pi/4) = lim_(x ->pi/4) "f"(x) = lim_(x ->pi/4) (1 - tan x)/(4x - pi)`

Applying L'Hospital rule on R.H.S., we get

f`(pi/4) = lim_(x ->pi/4) (- sec^2 x)/4`

`=> "f"(pi/4) = (- 2)/4 = (- 1)/2`

shaalaa.com
Differentiation
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×