Advertisements
Advertisements
Question
Let f(x) be a polynomial of degree 4 having extreme values at x = 1 and x = 2. If `lim_(x rightarrow 0) ((f(x))/x^2 + 1)` = 3 then f(–1) is equal to ______.
Options
`1/2`
`3/2`
`5/2`
`9/2`
Solution
Let f(x) be a polynomial of degree 4 having extreme values at x = 1 and x = 2. If `lim_(x rightarrow 0) ((f(x))/x^2 + 1)` = 3 then f(–1) is equal to `underlinebb(9/2)`.
Explanation:
∵ f(x) has extremum values at x = 1 and x = 2
∵ f'(1) = 0 and f'(2) = 0
As, f(x) is a polynomial of degree 4.
Suppose f(x) = Ax4 + Bx3 + Cx2 + Dx + E
∵ `lim_(x rightarrow 0)(f(x)/x^2 + 1)` = 3
⇒ `lim_(x rightarrow 0)(("A"x^4 + "B"x^3 + "C"x^2 + "D"x + "E")/x^2+1)` = 3
⇒ `lim_(x rightarrow 0)("A"x^2 + "B"x + "C" + "D"/x + "E"/x^2 + 1)` = 3
As limit has finite value, so D = 0 and E = 0
Now A(0)2 + B(0) + C + 0 + 0 + 1 = 3
⇒ c + 1 = 3
⇒ c = 2
f'(x) = 4Ax2 + 3Bx2 + 2Cx + D
f'(1) = 0
⇒ 4A(1) + 3B(1) + 2C(1) + D = 0
⇒ 4A + 3B = –4 ...(i)
f'(2) = 0
⇒ 4A(8) + 3B(4) + 2C(2) + D = 0
⇒ 8A + 3B = –2 ...(ii)
From equations (i) and (ii), we get
A = `1/2` and B = –2
So, f(x) = `x^4/2 - 2x^3 + 2x^2`
Therefore, f(–1) = `(-1)^4/2 - 2(-1)^3 + 2(-1)^2`
= `1/2 + 2 + 2`
= `9/2`
Hence f(–1) = `9/2`