Advertisements
Advertisements
Question
Let f(x) = `cos(2tan^-1sin(cot^-1sqrt((1 - x)/x))), 0 < x < 1`. Then ______.
Options
(1 + x)2f'(x) + 2(f(x))2 = 0
(1 – x)2f'(x) + 2(f(x))2 = 0
(1 + x)2f'(x) – 2(f(x))2 = 0
(1 – x)2f'(x) – 2(f(x))2 = 0
MCQ
Fill in the Blanks
Solution
Let f(x) = `cos(2tan^-1sin(cot^-1sqrt((1 - x)/x))), 0 < x < 1`. Then `underlinebb((1 - x)^2f^'(x) + 2(f(x))^2 = 0)`.
Explanation:
Put x = sin2θ, 0 < x < 1
⇒ sinθ = `sqrt(x)`
Now, f(x) = `cos(2tan^-1sin(cot^-1sqrt((1 - sin^2θ)/(sin^2θ)))`
⇒ f(x) = `cos(2tan^-1(sinθ))`
⇒ f(x) = `cos(2tan^-1sqrt(x)))` = `costan^-1((2sqrt(x))/(1 - x))`
⇒ f(x) = `(1 - x)/(1 + x)`
⇒ f'(x) = `((1 + x)(-1) - (1 - x).1)/(1 + x)^2` = `(-2)/(1 + x)^2`
⇒ f'(x).(1 – x)2 = `-2((1 - x)/(1 + x))^2`
⇒ (1 – x)2f'(x) + 2(f(x))2 = 0
shaalaa.com
Is there an error in this question or solution?