Advertisements
Advertisements
Question
Let f(x) = log x + x3 and let g(x) be the inverse of f(x), then |64g"(1)| is equal to ______.
Options
5.00
6.00
7.00
8.00
MCQ
Fill in the Blanks
Solution
Let f(x) = log x + x3 and let g(x) be the inverse of f(x), then |64g"(1)| is equal to 5.00.
Explanation:
g'f(x) = `1/(f^'(x))`
⇒ g"(f(x)).f'(x) = `-1/((f^'(x))^2).f^('')(x)`
⇒ g"(logx + x3) = `(-(6x - 1/x^2))/((1/x + 3x^2))`
Put x = 1
⇒ g"(1) = `-5/64`
⇒ |64g"(1)| = 5
shaalaa.com
Is there an error in this question or solution?