English

Let H: x2a2-y2b2 = 1, a > 0, b > 0, be a hyperbola such that the sum of lengths of the transverse and the conjugate axes is 4(22+14). If the eccentricity H is 112 -

Advertisements
Advertisements

Question

Let H: `x^2/a^2 - y^2/b^2` = 1, a > 0, b > 0, be a hyperbola such that the sum of lengths of the transverse and the conjugate axes is `4(2sqrt(2) + sqrt(14))`. If the eccentricity H is `sqrt(11)/2`, then the value of a2 + 2b2 is equal to ______.

Options

  • 86

  • 87

  • 88

  • 89

MCQ
Fill in the Blanks

Solution

Let H: `x^2/a^2 - y^2/b^2` = 1, a > 0, b > 0, be a hyperbola such that the sum of lengths of the transverse and the conjugate axes is `4(2sqrt(2) + sqrt(14))`. If the eccentricity H is `sqrt(11)/2`, then the value of a2 + 2b2 is equal to 88.

Explanation:

Given: Equation of hyperbola is H: `x^2/a^2 - y^2/b^2` = 1; a > 0, b > 0

And eccentricity of H is e = `sqrt(11)/2`

And sum of length of transverse and conjugate axis is 2a + 2b = `4(2sqrt(2) + sqrt(14))`

As we know, e = `sqrt(1 + b^2/a^2)`

⇒ e2 = `1 + b^2/a^2`

⇒ `11/4 = 1 + b^2/a^2`

⇒ b2 = `7/4a^2`

⇒  b = `sqrt(7)/2a`

∵ 2a + 2b = `4(2sqrt(2) + sqrt(14))`

⇒ `2a + sqrt(7)a = 4(2sqrt(2) + sqrt(14))`

⇒ `a(2 + sqrt(7)) = 4sqrt(2)(2 + sqrt(7))`

⇒ a = `4sqrt(2)`

⇒ b = `2sqrt(14)`

∴ a2 + b2 = `(4sqrt(2))^2 + (2sqrt(14))^2`

= 32 + 56

= 88

shaalaa.com
Conic Sections - Hyperbola
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×