Advertisements
Advertisements
Question
Let H: `x^2/a^2 - y^2/b^2` = 1, a > 0, b > 0, be a hyperbola such that the sum of lengths of the transverse and the conjugate axes is `4(2sqrt(2) + sqrt(14))`. If the eccentricity H is `sqrt(11)/2`, then the value of a2 + 2b2 is equal to ______.
Options
86
87
88
89
Solution
Let H: `x^2/a^2 - y^2/b^2` = 1, a > 0, b > 0, be a hyperbola such that the sum of lengths of the transverse and the conjugate axes is `4(2sqrt(2) + sqrt(14))`. If the eccentricity H is `sqrt(11)/2`, then the value of a2 + 2b2 is equal to 88.
Explanation:
Given: Equation of hyperbola is H: `x^2/a^2 - y^2/b^2` = 1; a > 0, b > 0
And eccentricity of H is e = `sqrt(11)/2`
And sum of length of transverse and conjugate axis is 2a + 2b = `4(2sqrt(2) + sqrt(14))`
As we know, e = `sqrt(1 + b^2/a^2)`
⇒ e2 = `1 + b^2/a^2`
⇒ `11/4 = 1 + b^2/a^2`
⇒ b2 = `7/4a^2`
⇒ b = `sqrt(7)/2a`
∵ 2a + 2b = `4(2sqrt(2) + sqrt(14))`
⇒ `2a + sqrt(7)a = 4(2sqrt(2) + sqrt(14))`
⇒ `a(2 + sqrt(7)) = 4sqrt(2)(2 + sqrt(7))`
⇒ a = `4sqrt(2)`
⇒ b = `2sqrt(14)`
∴ a2 + b2 = `(4sqrt(2))^2 + (2sqrt(14))^2`
= 32 + 56
= 88