Advertisements
Advertisements
Question
Let M = `[(0, -α),(α, 0)]`, where α is a non-zero real number an N = `sum_(k = 1)^49`M2k. If (I – M2)N = –2I, then the positive integral value of α is ______.
Options
0
1
2
3
Solution
Let M = `[(0, -α),(α, 0)]`, where α is a non-zero real number an N = `sum_(k = 1)^49`M2k. If (I – M2)N = –2I, then the positive integral value of α is 1.
Explanation:
Given, M = `[(0, -α),(α, 0)]`
and N = `sum_(k = 1)^49`M2k
Now, M2 = `[(0, -α),(α, 0)][(0, -α),(α, 0)]`
= `[(-α^2, 0),(0, -α^2)]`
= `-α^2[(1, 0),(0, 1)]`
= –α2I
Now, N = `sum_(k = 1)^49`M2k
⇒ N = `sum_(k = 1)(-α^2"I")^"k"`
⇒ N = `sum_(k = 1)^49(-α^2)^"k" "I"`
⇒ N = `(-α^2){((-α^2)^49 - 1)/(-α^2 - 1)}"I"`
⇒ N = `(-α^2(1 + α^98)"I")/(1 + α^2)`
Now, I – M2 = I + α2I = (1 + α2)I
∵ (I – M)2N = –2I
⇒ `(1 + α^2)((-α^2(1 + α^98))/(1 + α^2))"I"` = –2I
⇒ α2(1 + α98) = 2
⇒ α = 1