English

Let M = αα[0-αα0], where α is a non-zero real number an N = ∑k=149M2k. If (I – M2)N = –2I, then the positive integral value of α is ______. -

Advertisements
Advertisements

Question

Let M = `[(0, -α),(α, 0)]`, where α is a non-zero real number an N = `sum_(k = 1)^49`M2k. If (I – M2)N = –2I, then the positive integral value of α is ______.

Options

  • 0

  • 1

  • 2

  • 3

MCQ
Fill in the Blanks

Solution

Let M = `[(0, -α),(α, 0)]`, where α is a non-zero real number an N = `sum_(k = 1)^49`M2k. If (I – M2)N = –2I, then the positive integral value of α is 1.

Explanation:

Given, M = `[(0, -α),(α, 0)]`

and N = `sum_(k = 1)^49`M2k

Now, M2 = `[(0, -α),(α, 0)][(0, -α),(α, 0)]`

= `[(-α^2, 0),(0, -α^2)]`

= `-α^2[(1, 0),(0, 1)]`

= –α2I

Now, N = `sum_(k = 1)^49`M2k

⇒ N = `sum_(k = 1)(-α^2"I")^"k"`

⇒ N = `sum_(k = 1)^49(-α^2)^"k" "I"`

⇒ N = `(-α^2){((-α^2)^49 - 1)/(-α^2 - 1)}"I"`

⇒ N = `(-α^2(1 + α^98)"I")/(1 + α^2)`

Now, I – M2 = I + α2I = (1 + α2)I

∵ (I – M)2N = –2I

⇒ `(1 + α^2)((-α^2(1 + α^98))/(1 + α^2))"I"` = –2I

⇒ α2(1 + α98) = 2

⇒ α = 1

shaalaa.com
Matrices
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×