Advertisements
Advertisements
Question
Let PQ be a focal chord of the parabola y2 = 4x such that it subtends an angle of `π/2` at the point (3, 0). Let the line segment PQ be also a focal chord of the ellipse E: `x^2/a^2 + y^2/b^2` = 1, a2 > b2. If e is the eccentricity of the ellipse E, then the value of `1/e^2` is equal to ______.
Options
`1 + sqrt(2)`
`3 + 2sqrt(2)`
`1 + 2sqrt(3)`
`4 + 5sqrt(3)`
Solution
Let PQ be a focal chord of the parabola y2 = 4x such that it subtends an angle of `π/2` at the point (3, 0). Let the line segment PQ be also a focal chord of the ellipse E: `x^2/a^2 + y^2/b^2` = 1, a2 > b2. If e is the eccentricity of the ellipse E, then the value of `1/e^2` is equal to `underlinebb(3 + 2sqrt(2))`.
Explanation:
Given: Focal chord of y2 = 4x is PQ and it subtends an angle of `π/2` at point (3, 0)
Let parametric coordinates of point P be (t2, 2t) then parametric coordinates of point Q be `(1/t^2,(-2)/t)`
∵ AP ⊥ AQ
∴ (mAP)(mAQ) = –1
⇒ `((2t)/(t^2 - 3))(((-2)/t)/(1/t^2 - 3))` = –1
⇒ `(-4t^2)/((t^2 - 3)(1 - 3t^2))` = –1
⇒ 4t2 = –3t4 + 10t2 – 3
⇒ 3t4 – 6t2 + 3 = 0
⇒ (t2 – 1)2 = 0
⇒ t = 1
∴ Coordinates of point P and Q are (1, 2) and (1, –2) respectively.
Since, line segment PQ is also a focal chord of ellipse `x^2/a^2 + y^2/b^2` = 1, a2 > b2.
∴ P and Q must be end points of latus rectum
⇒ `(2b^2)/a` = 4 and ae = 1
As we know, b2 = a2(1 – e2)
⇒ b2 = a2 – a2e2
⇒ b2 = a2 – 1
⇒ `(a^2 - 1)/a` = 2
⇒ a2 – 2a – 1 = 0
⇒ a = `1 + sqrt(2)`
⇒ e = `1/a = 1/(1 + sqrt(2))`
⇒ e2 = `1/(3 + 2sqrt(2))`
⇒ `1/e^2 = 3 + 2sqrt(2)`