Advertisements
Advertisements
Question
Let S be the set of all real roots of the equation, 3x(3x – 1) + 2 = |3x – 1| + |3x – 2|. Then S ______.
Options
contains exactly two elements.
is a singleton.
is an empty set.
contains at least four elements.
MCQ
Fill in the Blanks
Solution
Let S be the set of all real roots of the equation, 3x(3x – 1) + 2 = |3x – 1| + |3x – 2|. Then S is a singleton.
Explanation:
Let 3x = y
∴ y(y – 1) + 2 = |y – 1| + |y – 2|
Case I: When y > 2
y2 – y + 2 = y – 1 + y – 2
⇒ y2 – 3y + 5 = 0
∵ D < 0 ...[∵ Equation not satisfy.]
Case II: When 1 ≤ y ≤ 2
y2 – y + 2 = y – 1 + y – 2; y2 – y + 1 = 0
∵ D < 0 ...[∵ Equation not satisfy.]
Case III: When y ≤ 1
y2 – y + 2 = –y + 1 – y + 2
⇒ y2 + y – 1 = 0
∴ y = `(-1 + sqrt(5))/2` = `(-1 - sqrt(5))/2` ...[∵ Equation not satisfy]
∴ Only one `-1 + sqrt(5)/2`satisfy equation
shaalaa.com
Solution of Linear Inequality
Is there an error in this question or solution?