Advertisements
Advertisements
Question
Let Sn(x) = `log_a 1/2 x + log_a 1/3 x + log_a 1/6 x + log_a 1/11 x + log_a 1/18 x + log_a 1/27x + ` ...... up to n-terms, where a > 1. If S24(x) = 1093 and S12(2x) = 265, then value of a is equal to ______.
Options
15
16
17
18
Solution
Let Sn(x) = `log_a 1/2 x + log_a 1/3 x + log_a 1/6 x + log_a 1/11 x + log_a 1/18 x + log_a 1/27x + ` ...... up to n-terms, where a > 1. If S24(x) = 1093 and S12(2x) = 265, then value of a is equal to 16.
Explanation:
Sn = (2 + 3 + 6 + 11 + 18 + 27 + ....)loga x
Let S = 2 + 3 + 6 + 11 ...... Tn
S = 2 + 3 + 6 + ...... Tn–1 + Tn
– – – – – – –
0 = 2 + 1 + 3 + 5 ...... –Tn
Tn = `2 + (n - 1)/2[2 + (n - 2)2]` = n2 – 2n + 3
∴ Sn = `sum(n^2 - 2n + 3)log_x`
= `((n(n + 1)(2n + 1))/6 - 2(n(n + 1))/2 + 3n)log_ax`
Sn(x) = `n/6[2n^2 - 3n + 13]log_ax`
∴ S24(x) = 1093
⇒ 4 × 1093 loga x = 1093
loga x = `1/4`
⇒ x = `a^(1/4)`
⇒ a = x4 ...(i)
Now, S12(2x) = 265
⇒ 2(265) loga 2x = 265
⇒ 2x = `a^(1/2)`
⇒ a = 4x2 ...(ii)
From (i) and (ii)
x4 = 4x2
⇒ x2 = 4 ...(∵ x ≠ 0)
∴ a = x4 = 16