English

Let Sn(x) = loga 12x+loga 13x+loga 16x+loga 111x + loga 118x+loga 127x + ...... up to n-terms, where a > 1. If S24(x) = 1093 and S12(2x) = 265, then value of a is equal to ______. -

Advertisements
Advertisements

Question

Let Sn(x) = `log_a  1/2 x + log_a  1/3 x + log_a  1/6 x + log_a  1/11 x  +  log_a  1/18 x + log_a  1/27x  + ` ...... up to n-terms, where a > 1. If S24(x) = 1093 and S12(2x) = 265, then value of a is equal to ______.

Options

  • 15

  • 16

  • 17

  • 18

MCQ
Fill in the Blanks

Solution

Let Sn(x) = `log_a  1/2 x + log_a  1/3 x + log_a  1/6 x + log_a  1/11 x  +  log_a  1/18 x + log_a  1/27x  + ` ...... up to n-terms, where a > 1. If S24(x) = 1093 and S12(2x) = 265, then value of a is equal to 16.

Explanation:

Sn = (2 + 3 + 6 + 11 + 18 + 27 + ....)loga x

Let S = 2 + 3 + 6 + 11  ......  Tn
      S = 2 + 3 + 6 + ......  Tn–1 + Tn
      –   –   –   –    –          –     –
      0 = 2 + 1 + 3 + 5  ...... –Tn 

Tn = `2 + (n - 1)/2[2 + (n - 2)2]` = n2 – 2n + 3

∴ Sn = `sum(n^2 - 2n + 3)log_x`

= `((n(n + 1)(2n + 1))/6 - 2(n(n + 1))/2 + 3n)log_ax`

Sn(x) = `n/6[2n^2 - 3n + 13]log_ax`

∴ S24(x) = 1093

⇒ 4 × 1093 loga x = 1093

loga x = `1/4`

⇒ x = `a^(1/4)`

⇒ a = x4  ...(i)

Now, S12(2x) = 265

⇒ 2(265) loga 2x = 265

⇒ 2x = `a^(1/2)`

⇒ a = 4x2  ...(ii)

From (i) and (ii)

x4 = 4x2

⇒ x2 = 4  ...(∵ x ≠ 0)

∴ a = x4 = 16

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×