Advertisements
Advertisements
Question
Let the eccentricity of an ellipse `x^2/a^2 + y^2/b^2` = 1, a > b, be `1/4`. If this ellipse passes through the point ```(-4sqrt(2/5), 3)`, then a2 + b2 is equal to ______.
Options
29
31
32
34
Solution
Let the eccentricity of an ellipse `x^2/"a"^2 + "y"^2/"b"^2` = 1, a > b, be `1/4`. If this ellipse passes through the point ```(-4sqrt(2/5), 3)`, then a2 + b2 is equal to 31.
Explanation:
Equation of ellipse is `x^2/"a"^2 + "y"^2/"b"^2` = 1, a > b.
Given eccentricity is `1/4`.
⇒ e2 = `1 - "b"^2/"a"^2`
`1/16 = 1- "b"^2/"a"^2`
⇒ `"b"^2/"a"^2` = `1 - 1/16` = `15/16`
⇒ b2 = `15/16"a"^2`
Put the value of b2 in the equation of ellipse and satisfy the point `(-4sqrt(2/5), 3)`.
⇒ `(16 xx 2/5)/"a"^2 + 9/"b"^2` = 1
⇒ `32/(5a^2) + 9/b^2` = 1
⇒ `32/(5"a"^2) + 9/(15/16"a"^2)` = 1
⇒ `80/(5"a"^2)` = 1
⇒ 16 = a2
Put the value of a2 in b2.
⇒ b2 = `15/16"a"^2`
b2 = 15
Add a2 and b2; a2 + b2 = 16 + 15 = 31.