English

Let the eccentricity of an ellipse x2a2+y2b2 = 1, a > b, be 14. If this ellipse passes through the point (-425,3), then a2 + b2 is equal to ______. -

Advertisements
Advertisements

Question

Let the eccentricity of an ellipse `x^2/a^2 + y^2/b^2` = 1, a > b, be `1/4`. If this ellipse passes through the point ```(-4sqrt(2/5), 3)`, then a2 + b2 is equal to ______.

Options

  • 29

  • 31

  • 32

  • 34

MCQ
Fill in the Blanks

Solution

Let the eccentricity of an ellipse `x^2/"a"^2 + "y"^2/"b"^2` = 1, a > b, be `1/4`. If this ellipse passes through the point ```(-4sqrt(2/5), 3)`, then a2 + b2 is equal to 31.

Explanation:

Equation of ellipse is `x^2/"a"^2 + "y"^2/"b"^2` = 1, a > b.

Given eccentricity is `1/4`.

⇒ e2 = `1 - "b"^2/"a"^2`

`1/16 = 1- "b"^2/"a"^2`

⇒ `"b"^2/"a"^2` = `1 - 1/16` = `15/16`

⇒ b2 = `15/16"a"^2`

Put the value of b2 in the equation of ellipse and satisfy the point `(-4sqrt(2/5), 3)`.

⇒ `(16 xx 2/5)/"a"^2 + 9/"b"^2` = 1

⇒ `32/(5a^2) + 9/b^2` = 1

⇒ `32/(5"a"^2) + 9/(15/16"a"^2)` = 1

⇒ `80/(5"a"^2)` = 1

⇒ 16 = a2

Put the value of a2 in b2.

⇒ b2 = `15/16"a"^2`

b2 = 15

Add a2 and b2; a2 + b2 = 16 + 15 = 31.

shaalaa.com
Conic Sections - Ellipse
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×