Advertisements
Advertisements
Question
Let the solution curve of the differential equation `x (dy)/(dx) - y = sqrt(y^2 + 16x^2)`, y(1) = 3 be y = y(x). Then y(2) is equal to ______.
Options
15
11
13
17
Solution
Let the solution curve of the differential equation `x (dy)/(dx) - y = sqrt(y^2 + 16x^2)`, y(1) = 3 be y = y(x). Then y(2) is equal to 15.
Explanation:
Given differential equation is `x(dy)/(dx) - y = sqrt(y^2 + 16x^2)`
⇒ `x(dy)/(dx) = y + sqrt(y^2 + 16x^2)`
⇒ `(dy)/(dx) = (y + sqrt(y^2 + 16x^2))/x` ...(1)
Let y = tx
⇒ `(dy)/(dx) = t + x(dt)/(dx)` ...(2)
From equation (1) and (2), we get
`t + x(dt)/(dx) = (y + sqrt(y^2 + 16x^2))/x`
⇒ `t + x(dt)/(dx) = (tx + sqrt(t^2x^2 + 16x^2))/x`
⇒ `t + x(dt)/(dx) = t + sqrt(t^2 + 16)`
⇒ `x(dt)/(dx) = sqrt(t^2 + 16)`
⇒ `(dt)/sqrt(t^2 + 16) = (dx)/x`
Integrating both the sides, we get
`int(dt)/sqrt(t^2 + 16) = int(dx)/x`
⇒ In `[t + sqrt(t^2 + 16)]` = In x + In c
⇒ `t + sqrt(t^2 + 16)` = xc
⇒ `y/x + sqrt((y/x)^2 + 16)` = xc
⇒ `y/x + sqrt((y^2 + 16x^2)/x` = xc
⇒ `y + sqrt(y^2 + 16x^2)` = x2c
Now, y(1) = 3
⇒ `3 + sqrt(9 + 16)` = c
⇒ c = 8
⇒ `y + sqrt(y^2 + 16x^2)` = 8x2
So, at x = 2,
`y + sqrt(y^2 + 64)` = 32
⇒ `sqrt(y^2 + 64)` = (32 – y)
⇒ y2 + 64 = y2 + (32)2 – 64y
⇒ 64 = 960
⇒ y = 15
∴ y(2) = 15