Advertisements
Advertisements
Question
Let the solution curve y = y(x) of the differential equation (4 + x2) dy – 2x (x2 + 3y + 4) dx = 0 pass through the origin. Then y (2) is equal to ______.
Options
11
12
13
14
Solution
Let the solution curve y = y(x) of the differential equation (4 + x2) dy – 2x (x2 + 3y + 4) dx = 0 pass through the origin. Then y (2) is equal to 12.
Explanation:
Given differential equation is
(4 + x2) dy – 2x (x2 + 3y + 4) dx = 0
`\implies (x^2 + 4)(dy)/(dx)` = 2x3 + 6xy + 8x
`(x^2 + 4)(dy)/(dx) - 6xy` = 2x3 + 8x
`(dy)/(dx) - (6x)/(x^2 + 4)y = (2x^3 + 8x)/(x^2 + y)`
It looks like
`(dy)/(dx) + py` = Q
where
p = `(-6x)/(x^2 + 4)`; Q = `(2x^3 + 8x)/(x^2 + 4)`
I.F. = `e^(-int (6x)/(x^2 + 4)dx) = e^(-3log_e(x^2 + 4)`
= `e^(log_e(x^2 + 4)^-3) = 1/(x^2 + 4)^3`
∴ `y. 1/(x^2 + 4)^3 = int (2x^3 + 8x)/((x^2 + 4)^3(x^2 + 4))dx`
`y/(x^2 + 4)^3 = int (2x(x^2 + 4))/((x^2 + 4)^3(x^2 + 4))dx`
x2 + 4 = t
2xdx = dt
`y/(x^2 + 4)^3 = int(dy)/t^3; y/(x^2 + 4)^3 = (-1)/(2(x^2 + 4)^2) + C`
Passes through origin (0, 0)
0 = `(-1)/(2 xx 16) + C; y/(x^2 + 4)^3 = (-1)/(2(x^2 + 4)^2) + 1/32`
y = `(-(x^2 + 4))/2 + (x^2 + 4)^3/32`
y(2) = `-8/2 + (8 xx 8 xx 8)/32`
= 16 – 4
= 12