Advertisements
Advertisements
Question
Let x1, x2, x3 be the solutions of `tan^-1((2x + 1)/(x + 1)) + tan^-1((2x - 1)/(x - 1))` = 2tan–1(x + 1) where x1 < x2 < x3 then 2x1 + x2 + x32 is equal to ______.
Options
0.00
1.00
2.00
3.00
Solution
Let x1, x2, x3 be the solutions of `tan^-1((2x + 1)/(x + 1)) + tan^-1((2x - 1)/(x - 1))` = 2tan–1(x + 1) where x1 < x2 < x3 then 2x1 + x2 + x32 is equal to 1.00.
Explanation:
Let α + β = 2γ ...(i)
where tanα = `(2x + 1)/(x + 1)`, tanβ = `(2x - 1)/(x - 1)` and tanγ = x + 1
From tan(α + β) = tan2γ, we get
`(tanα + tanβ)/(1 - tanαtanβ) = (2tanγ)/(1 - tan^2γ)`
⇒ `((2x + 1)/(x + 1) + (2x - 1)/(x - 1))/(1 - (4x^2 - 1)/(x^2 - 1)) = (2(x + 1))/(1 - (x + 1)^2`
⇒ `(2x^2 - x - 1 + 2x^2 + x - 1)/(x^2 - 1 - 4x^2 + 1) = (2(x + 1))/(-x^2 - 2x)`
⇒ `(2(2x^2 - 1))/(-3x^2) = (2(x + 1))/(-(x^2 + 2x)`
x = 0
or 2x3 + 4x2 – x – 2 = 3x2 + 3x
⇒ 2x3 + x2 – 4x – 2 = 0
⇒ x2(2x + 1) – 2(2x + 1) = 0
⇒ (x2 – 2)(2x + 1) = 0
⇒ x = `sqrt(2), -sqrt(2)` or x = `-1/2`
x = `-sqrt(2)` is rejecred ∵ It does not satisfy (i)
⇒ x1 = `-1/2`, x2 = 0 and x3 = `sqrt(2)`
⇒ 2x1 + x2 + x32 = 1