Advertisements
Advertisements
Question
Let `int ((x^6 - 4)dx)/((x^6 + 2)^(1/4).x^4) = (ℓ(x^6 + 2)^m)/x^n + C`, then `n/(ℓm)` is equal to ______.
Options
6.00
7.00
8.00
9.00
MCQ
Fill in the Blanks
Solution
Let `int ((x^6 - 4)dx)/((x^6 + 2)^(1/4).x^4) = (ℓ(x^6 + 2)^m)/x^n + C`, then `n/(ℓm)` is equal to 6.00.
Explanation:
Let I = `int ((x^6 - 4)dx)/((x^6 + 2)^(1/4)x^4)`
= `int ((x - 4/x^5)dx)/(x^2 + 2/x^4)^(1/4)` ...`((∵ int_α^βf(x)dx + int_a^bf^-1(x)dx = bβ - aα),("when" a = f(α) and b = f(β)))`
Let `x^2 + 2/x^4` = t4
⇒ `(x - 4/x^5)dx` = 2t3dt
I = `2int (t^3dt)/t = (2t^3)/3`
= `2/3(x^6 + 2)^(3/4)/x^3 + C`
⇒ `n/(ℓm)` = 6
shaalaa.com
Is there an error in this question or solution?