English

Let ∫(x6-4)dx(x6+2)14.x4=ℓ(x6+2)mxn+C, then nℓm is equal to ______. -

Advertisements
Advertisements

Question

Let `int ((x^6 - 4)dx)/((x^6 + 2)^(1/4).x^4) = (ℓ(x^6 + 2)^m)/x^n + C`, then `n/(ℓm)` is equal to ______.

Options

  • 6.00

  • 7.00

  • 8.00

  • 9.00

MCQ
Fill in the Blanks

Solution

Let `int ((x^6 - 4)dx)/((x^6 + 2)^(1/4).x^4) = (ℓ(x^6 + 2)^m)/x^n + C`, then `n/(ℓm)` is equal to 6.00.

Explanation:

Let I = `int ((x^6 - 4)dx)/((x^6 + 2)^(1/4)x^4)`

= `int ((x - 4/x^5)dx)/(x^2 + 2/x^4)^(1/4)`  ...`((∵ int_α^βf(x)dx + int_a^bf^-1(x)dx = bβ - aα),("when"  a = f(α) and b = f(β)))`

Let `x^2 + 2/x^4` = t4

⇒ `(x - 4/x^5)dx` = 2t3dt

I = `2int (t^3dt)/t = (2t^3)/3`

= `2/3(x^6 + 2)^(3/4)/x^3 + C`

⇒ `n/(ℓm)` = 6

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×