Advertisements
Advertisements
Question
Let y = y(x) be a solution curve of the differential equation (y + 1)tan2xdx + tanxdy + ydx = 0, `x∈(0, π/2)`. If `lim_(x→0^+)` xy(x) = 1, then the value of `y(π/2)` is ______.
Options
`π/4 - 1`
`π/4 + 1`
`π/4`
`-π/4`
Solution
Let y = y(x) be a solution curve of the differential equation (y + 1)tan2xdx + tanxdy + ydx = 0, `x∈(0, π/2)`. If `lim_(x→0^+)` xy(x) = 1, then the value of `y(π/2)` is `underlinebb(π/4)`.
Explanation:
(y + 1)tan2xdx + tanxdy + ydx = 0
So, `(dy)/(dx) + (1 + y)tanx` = –ycotx
⇒ `(dy)/(dx) + y(tanx + cotx)` = –tanx
IF = `e^(int(tanx + cotx)dx` = `e^(int(tan^2x + 1)/tanxdx` = tanx
∴ ytanx = `int-tan^2xdx + C`
⇒ ytanx = `int(1 - sec^2x)dx + C`
⇒ ytanx = x – tanx + C
Now `lim_(x→0^+)xy` = 1
⇒ `lim_(x→0^+)(x/(tanx))(x - tanx + C)` = 1
⇒ 1(0 – 0 + C) = 1
⇒ C = 1
Then, the function y tan x = x – tanx + 1 at x = `π/4`
⇒ `y(π/4)tan(π/4) = π/4 - tan π/4 + 1`
∴ `y(π/4) = π/4`