Advertisements
Advertisements
Question
Let y = y(x) be the solution of the differential equation, `(2 + sinxdy)/(y + 1) (dy)/(dx)` = –cosx. If y > 0, y(0) = 1. If y(π) = a, and `(dy)/(dx)` at x = π is b, then the ordered pair (a, b) is equal to ______.
Options
`(2, 3/2)`
(1, 1)
(2, 1)
(1, –1)
Solution
Let y = y(x) be the solution of the differential equation, `(2 + sinxdy)/(y + 1) (dy)/(dx)` = –cosx. If y > 0, y(0) = 1. If y(π) = a, and `(dy)/(dx)` at x = π is b, then the ordered pair (a, b) is equal to (1, 1).
Explanation:
`(2 + sinxdy)/(y + 1) (dy)/(dx)` = –cosx y(0) = 1, y(π) = a
`(dy)/(y + 1) = (-cosx)/(2 + sinx)dx`
`int(dy)/(y + 1) = -intcosx/(2 + sinx)dx`
log(y + 1) = –log(2 + sinx) + C ...(i)
y(0) = 1
log(1 + 1) = –log(2 + sin0) + C
C = 2log2
From equation (i),
log(y + 1) = –log(2 + sinx) + 2log2
y(π) = a
⇒ log(a + 1) = –log(2 + sinπ) + 2log2
⇒ log(a + 1) = –log2 + 2log2
⇒ log(a + 1) = log2
a + 1 = 2
⇒ a = 1
Again `1/(y + 1) (dy)/(dx) = (-1)/(2 + sinx)cosx`
`(dy)/(dx)` = b, at x = π ...(ii)
`{{:(log(y + 1) = -log(2 + sinx) + 2log2),(x = π),(log(y + 1) = -log2 + 2log2),(y + 1 = 2 ⇒ y = 1):}}`
From equation (ii),
`1/2(dy)/(dx) = (-(-1))/(2 + 0)`
`(dy)/(dx)` = 1
b = 1
⇒ a = 1, b = 1