Advertisements
Advertisements
Question
Let y = y(x) be the solution of the differential equation `(dy)/(dx) + (sqrt(2)y)/(2cos^4x - cos2x) = xe^(tan^-1(sqrt(2)cost2x)), 0 < x < π/2` with `y(π/4) = π^2/32`. If `y(π/3) = π^2/18e^(-tan^-1(α))`, then the value of 3α2 is equal to ______.
Options
1
2
3
4
Solution
Let y = y(x) be the solution of the differential equation `(dy)/(dx) + (sqrt(2)y)/(2cos^4x - cos2x) = xe^(tan^-1(sqrt(2)cost2x)), 0 < x < π/2` with `y(π/4) = π^2/32`. If `y(π/3) = π^2/18e^(-tan^-1(α))`, then the value of 3α2 is equal to 2.
Explanation:
Given: `(dy)/(dx) + (sqrt(2)y)/(2cos^4x - cos2x)`
y = `xe^([tan^-1 (sqrt(5)cot2x)]); x ∈ (0, π/2)`
It is linear differential equation.
Comparing above differential equation with `(dy)/(dx) + py` = Q,
we get, p = `sqrt(2)/(2cos^4x - cos2x)`
and Q = `xe^(tan^-1(sqrt(5)cot2x)`
Now, I.F. = e
So, `intp.dx = intsqrt(2)/(2cos^4x - cos2x)dx`
⇒ `intp.dx = intsqrt(2)/(1/2(2cos^4x)^2 - cos2x)dx`
⇒ `intp.dx = intsqrt(2)/(1/2(1 + cos2x)^2 - cos2x)dx`
⇒ `intp.dx = int(2sqrt(2))/(1 + cos^2 2x)dx`
⇒ `intp.dx = int(2sqrt(2)sec^2 2x)/(2 + tan^2 2x)dx`
Let t = tan2x
⇒ dt = 2sec22x dx
⇒ `intp.dx = sqrt(2) int(dt)/((sqrt(2)) + t^2)`
⇒ `intp.dx = sqrt(2), 1/sqrt(2)tan^-1(t/sqrt(2))`
⇒ `intp.dx = tan^-1((tan2x)/sqrt(2))`
∴ IF = e
So, solution of the given differential equation is given by y (IF) = `intQ.(I.F.).dx`
⇒ `ye^(tan^(-1^(((tan2x)/sqrt(2))))) = intxe^(tan-1(sqrt(2)cot2x)).e^(tan^(-1^(((tan2x)/sqrt(2))))dx` ...(i)
Now, `tan^-1(sqrt(2)cot2x) + tan^-1((tan2x)/sqrt(2))`
= `tan^-1((sqrt(2)cot2x + tan (2x)/sqrt(2))/(1 - 1))` = `π/2`
From equation (i),
`ye^(tan^-1((tan2x)/sqrt(2))) = inte^(π/2)xdx`
⇒ `ye^(tan^-1((tan2x)/sqrt(2))) = e^(π/2).x^2/2 + C` ...(ii)
∵ `y(π/4) = π^2/32`
∴ `π^2/32e^(π/2) = e^(π/2).π^2/32 + C`
⇒ C = 0
Put x = `π/3` in equation (ii), we get
`y(π/3).e^(tan^-1)(-sqrt(3/2)) = e^(π/2).π^2/18`
⇒ `π^2/18e^(tan^-1(α)).e^(tan^-1(-sqrt(3/2))) = e^(π/2).π^2/18`
⇒ `e^(tan^-1(-α) + tan^-1(-sqrt(3/2))) = e^(π/2)`
⇒ `tan^-1(-α) + tan^-1(-sqrt(3/2)) = π/2`
⇒ `αsqrt(3/2)` = 1
⇒ α2 = `2/3`
⇒ 3α2 = 2